Hyun Woo Ji, Jieun Kang, Hwan-Cheol Kim, Junghee Jung, Seon-Jin Lee, Ji Ye Jung, Sei Won Lee
{"title":"The association between cumulative exposure to PM2.5 and DNA methylation measured using methyl-capture sequencing among COPD patients","authors":"Hyun Woo Ji, Jieun Kang, Hwan-Cheol Kim, Junghee Jung, Seon-Jin Lee, Ji Ye Jung, Sei Won Lee","doi":"10.1186/s12931-024-02955-3","DOIUrl":null,"url":null,"abstract":"Particulate matter with a diameter of < 2.5 μm (PM2.5) influences gene regulation via DNA methylation; however, its precise mechanism of action remains unclear. Thus, this study aimed to examine the connection between personal PM2.5 exposure and DNA methylation in CpG islands as well as explore the associated gene pathways. A total of 95 male patients with chronic obstructive pulmonary disease (COPD) were enrolled in this study. PM2.5 concentrations were measured for 12 months, with individual exposure recorded for 24 h every 3 months. Mean indoor and estimated individual PM2.5 exposure levels were calculated for short-term (7 days), mid-term (35 days), and long-term (90 days). DNA methylation analysis was performed on the blood samples, which, after PCR amplification and hybridization, were finally sequenced using an Illumina NovaSeq 6000 system. Correlation between PM2.5 exposure and CpG methylation sites was confirmed via a mixed-effects model. Functional enrichment analysis was performed on unique CpG methylation sites associated with PM2.5 exposure to identify the relevant biological functions or pathways. The number of CpG sites showing differential methylation was 36, 381, and 182 for the short-, mid-, and long-term indoor models, respectively, and 3, 98, and 28 for the short-, mid-, and long-term estimated exposure models, respectively. The representative genes were TMTC2 (p = 1.63 × 10-3, R2 = 0.656), GLRX3 (p = 1.46 × 10-3, R2 = 0.623), DCAF15 (p = 2.43 × 10-4, R2 = 0.623), CNOT6L (p = 1.46 × 10-4, R2 = 0.609), BSN (p = 2.21 × 10-5, R2 = 0.606), and SENP6 (p = 1.59 × 10-4, R2 = 0.604). Functional enrichment analysis demonstrated that the related genes were mostly associated with pathways related to synaptic transmission in neurodegenerative diseases and cancer. A significant association was observed between PM2.5 exposure and DNA methylation upon short-term exposure, and the extent of DNA methylation was the highest upon mid-term exposure. Additionally, various pathways related to neurodegenerative diseases and cancer were associated with patients with COPD. NCT04878367.","PeriodicalId":21109,"journal":{"name":"Respiratory Research","volume":"9 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12931-024-02955-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0
Abstract
Particulate matter with a diameter of < 2.5 μm (PM2.5) influences gene regulation via DNA methylation; however, its precise mechanism of action remains unclear. Thus, this study aimed to examine the connection between personal PM2.5 exposure and DNA methylation in CpG islands as well as explore the associated gene pathways. A total of 95 male patients with chronic obstructive pulmonary disease (COPD) were enrolled in this study. PM2.5 concentrations were measured for 12 months, with individual exposure recorded for 24 h every 3 months. Mean indoor and estimated individual PM2.5 exposure levels were calculated for short-term (7 days), mid-term (35 days), and long-term (90 days). DNA methylation analysis was performed on the blood samples, which, after PCR amplification and hybridization, were finally sequenced using an Illumina NovaSeq 6000 system. Correlation between PM2.5 exposure and CpG methylation sites was confirmed via a mixed-effects model. Functional enrichment analysis was performed on unique CpG methylation sites associated with PM2.5 exposure to identify the relevant biological functions or pathways. The number of CpG sites showing differential methylation was 36, 381, and 182 for the short-, mid-, and long-term indoor models, respectively, and 3, 98, and 28 for the short-, mid-, and long-term estimated exposure models, respectively. The representative genes were TMTC2 (p = 1.63 × 10-3, R2 = 0.656), GLRX3 (p = 1.46 × 10-3, R2 = 0.623), DCAF15 (p = 2.43 × 10-4, R2 = 0.623), CNOT6L (p = 1.46 × 10-4, R2 = 0.609), BSN (p = 2.21 × 10-5, R2 = 0.606), and SENP6 (p = 1.59 × 10-4, R2 = 0.604). Functional enrichment analysis demonstrated that the related genes were mostly associated with pathways related to synaptic transmission in neurodegenerative diseases and cancer. A significant association was observed between PM2.5 exposure and DNA methylation upon short-term exposure, and the extent of DNA methylation was the highest upon mid-term exposure. Additionally, various pathways related to neurodegenerative diseases and cancer were associated with patients with COPD. NCT04878367.
期刊介绍:
Respiratory Research publishes high-quality clinical and basic research, review and commentary articles on all aspects of respiratory medicine and related diseases.
As the leading fully open access journal in the field, Respiratory Research provides an essential resource for pulmonologists, allergists, immunologists and other physicians, researchers, healthcare workers and medical students with worldwide dissemination of articles resulting in high visibility and generating international discussion.
Topics of specific interest include asthma, chronic obstructive pulmonary disease, cystic fibrosis, genetics, infectious diseases, interstitial lung diseases, lung development, lung tumors, occupational and environmental factors, pulmonary circulation, pulmonary pharmacology and therapeutics, respiratory immunology, respiratory physiology, and sleep-related respiratory problems.