Paul Bosch, José M. Rodríguez, José M. Sigarreta, Eva Tourís
{"title":"Some new Milne-type inequalities","authors":"Paul Bosch, José M. Rodríguez, José M. Sigarreta, Eva Tourís","doi":"10.1186/s13660-024-03184-4","DOIUrl":null,"url":null,"abstract":"Inequalities play a main role in pure and applied mathematics. In this paper, we prove a generalization of Milne inequality for any measure space. The argument in the proof of this inequality allows us to obtain other Milne-type inequalities. Also, we improve the discrete version of Milne inequality, which holds for any positive value of the parameter p. Finally, we present a Milne-type inequality in the fractional context.","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"11 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03184-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Inequalities play a main role in pure and applied mathematics. In this paper, we prove a generalization of Milne inequality for any measure space. The argument in the proof of this inequality allows us to obtain other Milne-type inequalities. Also, we improve the discrete version of Milne inequality, which holds for any positive value of the parameter p. Finally, we present a Milne-type inequality in the fractional context.
期刊介绍:
The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.