{"title":"On Bernstein and Turán-type integral mean estimates for polar derivative of a polynomial","authors":"Khangembam Babina Devi, Barchand Chanam","doi":"10.1186/s13660-024-03183-5","DOIUrl":null,"url":null,"abstract":"Let $p(z)$ be a polynomial of degree n having no zero in $|z|< k$ , $k\\leq 1$ , then Govil [Proc. Nat. Acad. Sci., 50(1980), 50-52] proved $$ \\max _{|z|=1}|p'(z)|\\leq \\frac{n}{1+k^{n}}\\max _{|z|=1}|p(z)|, $$ provided $|p'(z)|$ and $|q'(z)|$ attain their maxima at the same point on the circle $|z|=1$ , where $$ q(z)=z^{n}\\overline{p\\bigg(\\frac{1}{\\overline{z}}\\bigg)}. $$ In this paper, we present integral mean inequalities of Turán- and Erdös-Lax-type for the polar derivative of a polynomial by involving some coefficients of the polynomial, which refine some previously proved results and one of our results improves the above Govil inequality as a special case. These results incorporate the placement of the zeros and some coefficients of the underlying polynomial. Furthermore, we provide numerical examples and graphical representations to demonstrate the superior precision of our results compared to some previously established results.","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"74 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03183-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let $p(z)$ be a polynomial of degree n having no zero in $|z|< k$ , $k\leq 1$ , then Govil [Proc. Nat. Acad. Sci., 50(1980), 50-52] proved $$ \max _{|z|=1}|p'(z)|\leq \frac{n}{1+k^{n}}\max _{|z|=1}|p(z)|, $$ provided $|p'(z)|$ and $|q'(z)|$ attain their maxima at the same point on the circle $|z|=1$ , where $$ q(z)=z^{n}\overline{p\bigg(\frac{1}{\overline{z}}\bigg)}. $$ In this paper, we present integral mean inequalities of Turán- and Erdös-Lax-type for the polar derivative of a polynomial by involving some coefficients of the polynomial, which refine some previously proved results and one of our results improves the above Govil inequality as a special case. These results incorporate the placement of the zeros and some coefficients of the underlying polynomial. Furthermore, we provide numerical examples and graphical representations to demonstrate the superior precision of our results compared to some previously established results.
期刊介绍:
The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.