Singular value inequalities of matrices via increasing functions

IF 1.5 3区 数学 Q1 MATHEMATICS
Wasim Audeh, Anwar Al-Boustanji, Manal Al-Labadi, Raja’a Al-Naimi
{"title":"Singular value inequalities of matrices via increasing functions","authors":"Wasim Audeh, Anwar Al-Boustanji, Manal Al-Labadi, Raja’a Al-Naimi","doi":"10.1186/s13660-024-03193-3","DOIUrl":null,"url":null,"abstract":"Let A, B, X, and Y be $n\\times n$ complex matrices such that A is self-adjoint, $B\\geq 0$ , $\\pm A\\leq B$ , $\\max ( \\Vert X \\Vert ^{2}, \\Vert Y \\Vert ^{2} ) \\leq 1$ , and let f be a nonnegative increasing convex function on $[ 0,\\infty ) $ satisfying $f(0)=0$ . Then $$ 2s_{j}\\bigl(f \\bigl( \\bigl\\vert XAY^{\\ast } \\bigr\\vert \\bigr) \\bigr)\\leq \\max \\bigl\\{ \\Vert X \\Vert ^{2}, \\Vert Y \\Vert ^{2} \\bigr\\} s_{j}\\bigl(f(B+A)\\oplus f(B-A)\\bigr) $$ for $j=1,2,\\ldots,n$ . This singular value inequality extends an inequality of Audeh and Kittaneh. Several generalizations for singular value and norm inequalities of matrices are also given.","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"48 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03193-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let A, B, X, and Y be $n\times n$ complex matrices such that A is self-adjoint, $B\geq 0$ , $\pm A\leq B$ , $\max ( \Vert X \Vert ^{2}, \Vert Y \Vert ^{2} ) \leq 1$ , and let f be a nonnegative increasing convex function on $[ 0,\infty ) $ satisfying $f(0)=0$ . Then $$ 2s_{j}\bigl(f \bigl( \bigl\vert XAY^{\ast } \bigr\vert \bigr) \bigr)\leq \max \bigl\{ \Vert X \Vert ^{2}, \Vert Y \Vert ^{2} \bigr\} s_{j}\bigl(f(B+A)\oplus f(B-A)\bigr) $$ for $j=1,2,\ldots,n$ . This singular value inequality extends an inequality of Audeh and Kittaneh. Several generalizations for singular value and norm inequalities of matrices are also given.
通过递增函数的矩阵奇异值不等式
让 A, B, X 和 Y 是 $n\times n$ 复数矩阵,使得 A 是自相关的,$B\geq 0$ , $pm A\leq B$ , $\max ( \Vert X \Vert ^{2}, \Vert Y \Vert ^{2} ) \leq 1$ , 并让 f 是一个在 $[ 0,\infty ) $ 上满足 $f(0)=0$ 的非负递增凸函数。Then $$ 2s_{j}\bigl(f \bigl\vert XAY^{\ast } \bigr\vert \bigr) \bigr)\leq \max \bigl\{ \Vert X \Vert ^{2}, \Vert Y \Vert ^{2}.\s_{j}\bigl(f(B+A)\oplus f(B-A)\bigr) $$ for $j=1,2,\ldots,n$ 。这个奇异值不等式扩展了 Audeh 和 Kittaneh 的不等式。此外,还给出了矩阵奇异值不等式和规范不等式的几种一般化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
6.20%
发文量
136
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信