Asymptotic properties of conditional value-at-risk estimate for asymptotic negatively associated samples

IF 1.5 3区 数学 Q1 MATHEMATICS
Rong Jin, Xufei Tang, Kan Chen
{"title":"Asymptotic properties of conditional value-at-risk estimate for asymptotic negatively associated samples","authors":"Rong Jin, Xufei Tang, Kan Chen","doi":"10.1186/s13660-024-03191-5","DOIUrl":null,"url":null,"abstract":"This article examines the strong consistency of the conditional value-at-risk (CVaR) estimate for asymptotic negatively associated (ANA or $\\rho ^{-}$ , for short) random samples under mild conditions. It is demonstrated that the optimal rate can achieve nearly $O (n^{-1/2})$ under certain appropriate conditions. Furthermore, we present numerical simulations and a real data example to corroborate our theoretical results based on finite samples.","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"12 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03191-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article examines the strong consistency of the conditional value-at-risk (CVaR) estimate for asymptotic negatively associated (ANA or $\rho ^{-}$ , for short) random samples under mild conditions. It is demonstrated that the optimal rate can achieve nearly $O (n^{-1/2})$ under certain appropriate conditions. Furthermore, we present numerical simulations and a real data example to corroborate our theoretical results based on finite samples.
渐近负相关样本的条件风险价值估计的渐近特性
本文研究了在温和条件下,渐近负相关(ANA 或简称 $\rho ^{-}$)随机样本的条件风险值(CVaR)估计值的强一致性。结果表明,在某些适当的条件下,最优率可以达到近 $O (n^{-1/2})$。此外,我们还给出了数值模拟和真实数据示例,以证实我们基于有限样本的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
6.20%
发文量
136
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信