Mary G. Thoubaan, Dheia G. Salih Al-Khafajy, Abbas Kareem Wanas, Daniel Breaz, Luminiţa-Ioana Cotîrlă
{"title":"Analysis of a Bifurcation and Stability of Equilibrium Points for Jeffrey Fluid Flow through a Non-Uniform Channel","authors":"Mary G. Thoubaan, Dheia G. Salih Al-Khafajy, Abbas Kareem Wanas, Daniel Breaz, Luminiţa-Ioana Cotîrlă","doi":"10.3390/sym16091144","DOIUrl":null,"url":null,"abstract":"This study aims to analyze how the parameter flow rate and amplitude of walling waves affect the peristaltic flow of Jeffrey’s fluid through an irregular channel. The movement of the fluid is described by a set of non-linear partial differential equations that consider the influential parameters. These equations are transformed into non-dimensional forms with appropriate boundary conditions. The study also utilizes dynamic systems theory to analyze the effects of the parameters on the streamline and to investigate the position of critical points and their local and global bifurcation of flow. The research presents numerical and analytical methods to illustrate the impact of flow rate and amplitude changes on fluid transport. It identifies three types of streamline patterns that occur: backwards, trapping, and augmented flow resulting from changes in the value of flow rate parameters.","PeriodicalId":501198,"journal":{"name":"Symmetry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym16091144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to analyze how the parameter flow rate and amplitude of walling waves affect the peristaltic flow of Jeffrey’s fluid through an irregular channel. The movement of the fluid is described by a set of non-linear partial differential equations that consider the influential parameters. These equations are transformed into non-dimensional forms with appropriate boundary conditions. The study also utilizes dynamic systems theory to analyze the effects of the parameters on the streamline and to investigate the position of critical points and their local and global bifurcation of flow. The research presents numerical and analytical methods to illustrate the impact of flow rate and amplitude changes on fluid transport. It identifies three types of streamline patterns that occur: backwards, trapping, and augmented flow resulting from changes in the value of flow rate parameters.