The Formulae and Symmetry Property of Bernstein Type Polynomials Related to Special Numbers and Functions

Symmetry Pub Date : 2024-09-05 DOI:10.3390/sym16091159
Ayse Yilmaz Ceylan, Buket Simsek
{"title":"The Formulae and Symmetry Property of Bernstein Type Polynomials Related to Special Numbers and Functions","authors":"Ayse Yilmaz Ceylan, Buket Simsek","doi":"10.3390/sym16091159","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to derive formulae for the generating functions of the Bernstein type polynomials. We give a PDE equation for this generating function. By using this equation, we give recurrence relations for the Bernstein polynomials. Using generating functions, we also derive some identities including a symmetry property for the Bernstein type polynomials. We give some relations among the Bernstein type polynomials, Bernoulli numbers, Stirling numbers, Dahee numbers, the Legendre polynomials, and the coefficients of the classical superoscillatory function associated with the weak measurements. We introduce some integral formulae for these polynomials. By using these integral formulae, we derive some new combinatorial sums involving the Bernoulli numbers and the combinatorial numbers. Moreover, we define Bezier type curves in terms of these polynomials.","PeriodicalId":501198,"journal":{"name":"Symmetry","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym16091159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to derive formulae for the generating functions of the Bernstein type polynomials. We give a PDE equation for this generating function. By using this equation, we give recurrence relations for the Bernstein polynomials. Using generating functions, we also derive some identities including a symmetry property for the Bernstein type polynomials. We give some relations among the Bernstein type polynomials, Bernoulli numbers, Stirling numbers, Dahee numbers, the Legendre polynomials, and the coefficients of the classical superoscillatory function associated with the weak measurements. We introduce some integral formulae for these polynomials. By using these integral formulae, we derive some new combinatorial sums involving the Bernoulli numbers and the combinatorial numbers. Moreover, we define Bezier type curves in terms of these polynomials.
与特殊数和函数有关的伯恩斯坦型多项式的公式和对称性
本文旨在推导伯恩斯坦型多项式的生成函数公式。我们给出了该生成函数的 PDE 方程。利用这个方程,我们给出了伯恩斯坦多项式的递推关系。利用生成函数,我们还推导出了伯恩斯坦型多项式的一些特性,包括对称性。我们给出了伯恩斯坦多项式、伯努利数、斯特林数、大黑数、勒让德多项式以及与弱测量相关的经典超振荡函数系数之间的一些关系。我们介绍了这些多项式的一些积分公式。利用这些积分公式,我们推导出一些涉及伯努利数和组合数的新组合和。此外,我们还用这些多项式定义了贝塞尔型曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信