Functorial Polar Functions in Compact Normal Joinfit Frames

IF 0.6 4区 数学 Q3 MATHEMATICS
Ricardo E. Carrera
{"title":"Functorial Polar Functions in Compact Normal Joinfit Frames","authors":"Ricardo E. Carrera","doi":"10.1007/s10485-024-09783-y","DOIUrl":null,"url":null,"abstract":"<div><p><span>\\(\\mathfrak {KNJ}\\)</span> is the category of compact normal joinfit frames and frame homomorphisms. <span>\\(\\mathcal {P}F\\)</span> is the complete boolean algebra of polars of the frame <i>F</i>. A function <span>\\(\\mathfrak {X}\\)</span> that assigns to each <span>\\(F \\in \\mathfrak {KNJ}\\)</span> a subalgebra <span>\\(\\mathfrak {X}(F)\\)</span> of <span>\\(\\mathcal {P}F\\)</span> that contains the complemented elements of <i>F</i> is a polar function. A polar function <span>\\(\\mathfrak {X}\\)</span> is invariant (resp., functorial) if whenever <span>\\(\\phi : F \\longrightarrow H \\in \\mathfrak {KNJ}\\)</span> is <span>\\(\\mathcal {P}\\)</span>-essential (resp., skeletal) and <span>\\(p \\in \\mathfrak {X}(F)\\)</span>, then <span>\\(\\phi (p)^{\\perp \\perp } \\in \\mathfrak {X}(H)\\)</span>. <span>\\(\\phi : F \\longrightarrow H \\in \\mathfrak {KNJ}\\)</span> is <span>\\(\\mathfrak {X}\\)</span>-splitting if <span>\\(\\phi \\)</span> is <span>\\(\\mathcal {P}\\)</span>-essential and whenever <span>\\(p \\in \\mathfrak {X}(F)\\)</span>, then <span>\\(\\phi (p)^{\\perp \\perp }\\)</span> is complemented in <i>H</i>. <span>\\(F \\in \\mathfrak {KNJ}\\)</span> is <span>\\(\\mathfrak {X}\\)</span>-projectable means that every <span>\\(p \\in \\mathfrak {X}(F)\\)</span> is complemented. For a polar function <span>\\(\\mathfrak {X}\\)</span> and <span>\\(F \\in \\mathfrak {KNJ}\\)</span>, we construct the least <span>\\(\\mathfrak {X}\\)</span>-splitting frame of <i>F</i>. Moreover, we prove that if <span>\\(\\mathfrak {X}\\)</span> is a functorial polar function, then the class of <span>\\(\\mathfrak {X}\\)</span>-projectable frames is a <span>\\(\\mathcal {P}\\)</span>-essential monoreflective subcategory of <span>\\(\\mathfrak {KNJS}\\)</span>, the category of <span>\\(\\mathfrak {KNJ}\\)</span>-objects and skeletal maps (the case <span>\\(\\mathfrak {X}= \\mathcal {P}\\)</span> is the result from Martínez and Zenk, which states that the class of strongly projectable <span>\\(\\mathfrak {KNJ}\\)</span>-objects is a reflective subcategory of <span>\\(\\mathfrak {KNJS}\\)</span>).</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"32 5","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-024-09783-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

\(\mathfrak {KNJ}\) is the category of compact normal joinfit frames and frame homomorphisms. \(\mathcal {P}F\) is the complete boolean algebra of polars of the frame F. A function \(\mathfrak {X}\) that assigns to each \(F \in \mathfrak {KNJ}\) a subalgebra \(\mathfrak {X}(F)\) of \(\mathcal {P}F\) that contains the complemented elements of F is a polar function. A polar function \(\mathfrak {X}\) is invariant (resp., functorial) if whenever \(\phi : F \longrightarrow H \in \mathfrak {KNJ}\) is \(\mathcal {P}\)-essential (resp., skeletal) and \(p \in \mathfrak {X}(F)\), then \(\phi (p)^{\perp \perp } \in \mathfrak {X}(H)\). \(\phi : F \longrightarrow H \in \mathfrak {KNJ}\) is \(\mathfrak {X}\)-splitting if \(\phi \) is \(\mathcal {P}\)-essential and whenever \(p \in \mathfrak {X}(F)\), then \(\phi (p)^{\perp \perp }\) is complemented in H. \(F \in \mathfrak {KNJ}\) is \(\mathfrak {X}\)-projectable means that every \(p \in \mathfrak {X}(F)\) is complemented. For a polar function \(\mathfrak {X}\) and \(F \in \mathfrak {KNJ}\), we construct the least \(\mathfrak {X}\)-splitting frame of F. Moreover, we prove that if \(\mathfrak {X}\) is a functorial polar function, then the class of \(\mathfrak {X}\)-projectable frames is a \(\mathcal {P}\)-essential monoreflective subcategory of \(\mathfrak {KNJS}\), the category of \(\mathfrak {KNJ}\)-objects and skeletal maps (the case \(\mathfrak {X}= \mathcal {P}\) is the result from Martínez and Zenk, which states that the class of strongly projectable \(\mathfrak {KNJ}\)-objects is a reflective subcategory of \(\mathfrak {KNJS}\)).

紧凑法向 Joinfit 框架中的扇形极坐标函数
\(\mathfrak{KNJ}\)是紧凑法线连结框架和框架同态的范畴。\函数 \(\mathfrak {X}\) 给 \(\mathfrak {KNJ}\) 的每个 \(F \in \mathfrak {KNJ}\) 分配一个包含 F 的补元的子代数 \(\mathfrak {X}(F)\) 就是极值函数。极性函数 \(\mathfrak {X}\) 是不变的(或者说,函数式的),如果每当 \(\phi : F \longrightarrow H \in \mathfrak {KNJ}\) 是 \(\mathcal {P}\) -essential (或者说、骨骼)并且 (p 在 (mathfrak {X}(F)\) 中),那么 ((phi (p)^{\perp \perp }\in \mathfrak {X}(H)\).\phi :如果 \(\phi \) 是 \(\mathcal {P})-本质的,并且只要 \(p \in \mathfrak {X}(F)\), 那么 \(\phi (p)^{\perp \perp }\) 在 H 中是被补充的,那么 \(F \longrightarrow H \in \mathfrak {KNJ}\) 就是 \(\mathfrak {X}\)- 分裂的。\F (in \mathfrak {KNJ}\) is \(\mathfrak {X}\)-projectable 意味着每个 p (in \mathfrak {X}(F)\) 都是被补的。对于极性函数 \(\mathfrak {X}\) 和 \(F \in \mathfrak {KNJ}\), 我们构造了 F 的最小 \(\mathfrak {X}\) - 分裂框架。此外,我们还证明了如果 \(\mathfrak {X}\) 是一个函极性函数,那么 \(\mathfrak {X}\)-projectable frames 的类就是 \(\mathcal {P}\)-essential monoreflective subcategory of \(\mathfrak {KNJS}\)、物体和骨架映射的类别(\(\mathfrak {X}= \mathcal {P}\的情况是马丁内斯和禅克的结果,即强可投影的\(\mathfrak {KNJ}\)-物体类是\(\mathfrak {KNJS}\)的反射子类)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信