Development of a 96 SNP panel for fecal genotyping and individual identification of bobcats (Lynx rufus) in California

IF 0.9 4区 环境科学与生态学 Q4 BIODIVERSITY CONSERVATION
Kristen D. Ahrens, Benjamin N. Sacks, Sophie Preckler-Quisquater, Michael R. Buchalski
{"title":"Development of a 96 SNP panel for fecal genotyping and individual identification of bobcats (Lynx rufus) in California","authors":"Kristen D. Ahrens, Benjamin N. Sacks, Sophie Preckler-Quisquater, Michael R. Buchalski","doi":"10.1007/s12686-024-01368-0","DOIUrl":null,"url":null,"abstract":"<p>Spatial mark-recapture abundance estimates obtained from fecal genotyping are becoming an essential component of conservation of carnivores. The bobcat (<i>Lynx rufus</i>) is a widespread carnivore in California, USA, that until recently lacked robust demographic data. To facilitate a statewide abundance study, we created a single nucleotide polymorphism (SNP) genotyping panel for individual identification. For SNP discovery, we performed restriction site-associated DNA sequencing (RADseq) on 78 samples collected throughout California and subsequently designed a panel of 96 SNPs for sequencing on a microfluidic platform. This panel includes loci to identify sex and differentiate bobcats from other common carnivores. The panel reliably differentiates individuals when using DNA extracted from feces, with 89% of samples amplifying at &gt; 90% of SNPs. Importantly, we found autosomal SNPs were monomorphic in the closely related Canada lynx (<i>L. canadensis</i>) suggesting the panel would still be effective for bobcat study in areas of sympatry. Fecal genotyping provides a cost-effective, noninvasive method for population monitoring and detecting individual movement. Our panel generates standardized genotypes that can be analyzed across laboratories and used for continued bobcat monitoring in California and other western states.</p>","PeriodicalId":10625,"journal":{"name":"Conservation Genetics Resources","volume":"26 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Genetics Resources","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12686-024-01368-0","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial mark-recapture abundance estimates obtained from fecal genotyping are becoming an essential component of conservation of carnivores. The bobcat (Lynx rufus) is a widespread carnivore in California, USA, that until recently lacked robust demographic data. To facilitate a statewide abundance study, we created a single nucleotide polymorphism (SNP) genotyping panel for individual identification. For SNP discovery, we performed restriction site-associated DNA sequencing (RADseq) on 78 samples collected throughout California and subsequently designed a panel of 96 SNPs for sequencing on a microfluidic platform. This panel includes loci to identify sex and differentiate bobcats from other common carnivores. The panel reliably differentiates individuals when using DNA extracted from feces, with 89% of samples amplifying at > 90% of SNPs. Importantly, we found autosomal SNPs were monomorphic in the closely related Canada lynx (L. canadensis) suggesting the panel would still be effective for bobcat study in areas of sympatry. Fecal genotyping provides a cost-effective, noninvasive method for population monitoring and detecting individual movement. Our panel generates standardized genotypes that can be analyzed across laboratories and used for continued bobcat monitoring in California and other western states.

Abstract Image

为加州山猫(Lynx rufus)的粪便基因分型和个体鉴定开发 96 SNP 面板
通过粪便基因分型获得的空间标记-重捕丰度估计值正成为保护食肉动物的重要组成部分。山猫(Lynx rufus)是美国加利福尼亚州的一种广泛分布的食肉动物,但直到最近它仍缺乏可靠的人口统计数据。为了促进全州范围的数量研究,我们创建了一个用于个体识别的单核苷酸多态性(SNP)基因分型面板。为了发现 SNP,我们对在加利福尼亚收集的 78 个样本进行了限制性位点相关 DNA 测序(RADseq),随后设计了一个由 96 个 SNP 组成的面板,在微流控平台上进行测序。该小组包括用于识别性别和区分山猫与其他普通食肉动物的基因位点。当使用从粪便中提取的 DNA 时,该面板能可靠地区分个体,89% 的样本能扩增出 90% 的 SNPs。重要的是,我们发现常染色体 SNPs 在亲缘关系较近的加拿大猞猁(L. canadensis)中是单态的,这表明该面板仍能有效地用于山猫共栖地区的研究。粪便基因分型为种群监测和个体迁移检测提供了一种经济有效的非侵入性方法。我们的面板可生成标准化的基因型,这些基因型可在不同的实验室进行分析,并可用于加利福尼亚州和其它西部州的山猫持续监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Conservation Genetics Resources
Conservation Genetics Resources BIODIVERSITY CONSERVATION-GENETICS & HEREDITY
CiteScore
2.90
自引率
9.10%
发文量
42
审稿时长
3-6 weeks
期刊介绍: Conservation Genetics Resources promotes the conservation of genetic diversity and advances the study of conservation genetics by providing rapid publication of technical papers and reviews on methodological innovations or improvements, computer programs, and genomic resources, as well as on the practical application of these resources towards the development of effective conservation policy and practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信