Regulation of Transmembrane Current through Modulation of Biomimetic Lipid Membrane Composition

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Zhiwei Shang, Jing Zhao, Mengyu Yang, Yuling Xiao, Wenjing Chu, Yilin Cai, Xiaoqing Yi, Meihua Lin, Fan Xia
{"title":"Regulation of Transmembrane Current through Modulation of Biomimetic Lipid Membrane Composition","authors":"Zhiwei Shang, Jing Zhao, Mengyu Yang, Yuling Xiao, Wenjing Chu, Yilin Cai, Xiaoqing Yi, Meihua Lin, Fan Xia","doi":"10.1039/d4fd00149d","DOIUrl":null,"url":null,"abstract":"Ion transport through biological channels is influenced not only by the structural properties of the channels themselves but also by the composition of the phospholipid membrane, which acts as a scaffold for these nanochannels. Drawing inspiration from how lipid membrane composition modulates ion currents, as seen in the activation of the K+ channel in Streptomyces A (KcsA) by anionic lipids, we propose a biomimetic nanochannel system that integrates DNA nanotechnology with two-dimensional graphene oxide (GO) nanosheets. By modifying the length of the multibranched DNA nanowires generated through the hybridization chain reactions (HCR) and varying the concentration of the linker strands that integrate these DNA nanowire structures with the GO membrane, the composition of the membrane can be effectively adjusted, consequently impacting ion transport. This method provides a strategy for developing devices with highly efficient and tunable ion transport, suitable for applications in mass transport, environmental protection, biomimetic channels, and biosensors.","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4fd00149d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ion transport through biological channels is influenced not only by the structural properties of the channels themselves but also by the composition of the phospholipid membrane, which acts as a scaffold for these nanochannels. Drawing inspiration from how lipid membrane composition modulates ion currents, as seen in the activation of the K+ channel in Streptomyces A (KcsA) by anionic lipids, we propose a biomimetic nanochannel system that integrates DNA nanotechnology with two-dimensional graphene oxide (GO) nanosheets. By modifying the length of the multibranched DNA nanowires generated through the hybridization chain reactions (HCR) and varying the concentration of the linker strands that integrate these DNA nanowire structures with the GO membrane, the composition of the membrane can be effectively adjusted, consequently impacting ion transport. This method provides a strategy for developing devices with highly efficient and tunable ion transport, suitable for applications in mass transport, environmental protection, biomimetic channels, and biosensors.
通过调节仿生脂质膜成分调节跨膜电流
离子通过生物通道的传输不仅受通道本身结构特性的影响,还受磷脂膜成分的影响,磷脂膜是这些纳米通道的支架。从阴离子脂质激活链霉菌 A 的 K+ 通道(KcsA)的过程中,我们从脂质膜成分如何调节离子电流中汲取了灵感,提出了一种将 DNA 纳米技术与二维氧化石墨烯(GO)纳米片相结合的仿生纳米通道系统。通过改变杂交链反应(HCR)产生的多分支 DNA 纳米线的长度,以及改变将这些 DNA 纳米线结构与 GO 膜结合在一起的连接链的浓度,可以有效调整膜的组成,从而影响离子传输。这种方法为开发具有高效和可调离子传输功能的设备提供了一种策略,适用于质量传输、环境保护、仿生通道和生物传感器等应用领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Faraday Discussions
Faraday Discussions 化学-物理化学
自引率
0.00%
发文量
259
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信