A note on the exceptional set for sums of unlike powers of primes

Yuhui Liu
{"title":"A note on the exceptional set for sums of unlike powers of primes","authors":"Yuhui Liu","doi":"10.1007/s13226-024-00695-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, it is proved that with at most <span>\\(O(N^{\\frac{13}{96}+\\varepsilon })\\)</span> exceptions, every sufficiently large even integer satisfying <span>\\(n\\leqslant N\\)</span>, <span>\\(n\\not \\equiv 2\\,(\\textrm{mod}\\,3)\\)</span> can be represented as the sum of two squares of primes, one cube of primes and three biquadrates of primes. This result constitutes a refinement upon that of the author [6].</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00695-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, it is proved that with at most \(O(N^{\frac{13}{96}+\varepsilon })\) exceptions, every sufficiently large even integer satisfying \(n\leqslant N\), \(n\not \equiv 2\,(\textrm{mod}\,3)\) can be represented as the sum of two squares of primes, one cube of primes and three biquadrates of primes. This result constitutes a refinement upon that of the author [6].

关于不同素数幂之和的特殊集合的说明
本文证明了,只要有(O(N^{\frac{13}{96}+\varepsilon })\)个例外,每个满足\(n\leqslant N\), \(n\not \equiv 2\,(\textrm{mod}\,3)\) 的足够大的偶整数都可以表示为两个素数的平方、一个素数的立方和三个素数的双四次方的和。这一结果是对作者[6]结果的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信