Elmira Baeva, Anna Kolbatova, Nadezhda Titova, Soham Saha, Alexandra Boltasseva, Simeon Bogdanov, Vladimir M Shalaev, Alexander Semenov, Gregory N Goltsman and Vadim Khrapai
{"title":"Natural width of the superconducting transition in epitaxial TiN films","authors":"Elmira Baeva, Anna Kolbatova, Nadezhda Titova, Soham Saha, Alexandra Boltasseva, Simeon Bogdanov, Vladimir M Shalaev, Alexander Semenov, Gregory N Goltsman and Vadim Khrapai","doi":"10.1088/1361-6668/ad74a1","DOIUrl":null,"url":null,"abstract":"We investigate the effect of various fluctuation mechanisms on the DC resistance in superconducting (SC) devices based on epitaxial titanium nitride (TiN) films. The samples we studied show a relatively steep resistive transition (RT), with a transition width , depending on the film thickness (20 nm, 9 nm, and 5 nm) and device dimensions. This value is significantly broader than expected due to conventional SC fluctuations ( ). The shape and width of the RT can be perfectly described by the well-known effective medium theory, which allows us to understand the origin of the inhomogeneity in the SC properties of TiN films. We propose that this inhomogeneity can have both dynamic and static origins. The dynamic mechanism is associated with spontaneous fluctuations in electron temperature (T-fluctuations), while the static mechanism is due to a random spatial distribution of surface magnetic disorder (MD). Our analysis has revealed clear correlations between the transition width and material parameters as well as device size for both proposed mechanisms. While T-fluctuations may contribute significantly to the observed transition width, our findings suggest that the dominant contribution comes from the MD mechanism. Our results provide new insights into the microscopic origin of broadening of the SC transition and inhomogeneity in thin SC films.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductor Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6668/ad74a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the effect of various fluctuation mechanisms on the DC resistance in superconducting (SC) devices based on epitaxial titanium nitride (TiN) films. The samples we studied show a relatively steep resistive transition (RT), with a transition width , depending on the film thickness (20 nm, 9 nm, and 5 nm) and device dimensions. This value is significantly broader than expected due to conventional SC fluctuations ( ). The shape and width of the RT can be perfectly described by the well-known effective medium theory, which allows us to understand the origin of the inhomogeneity in the SC properties of TiN films. We propose that this inhomogeneity can have both dynamic and static origins. The dynamic mechanism is associated with spontaneous fluctuations in electron temperature (T-fluctuations), while the static mechanism is due to a random spatial distribution of surface magnetic disorder (MD). Our analysis has revealed clear correlations between the transition width and material parameters as well as device size for both proposed mechanisms. While T-fluctuations may contribute significantly to the observed transition width, our findings suggest that the dominant contribution comes from the MD mechanism. Our results provide new insights into the microscopic origin of broadening of the SC transition and inhomogeneity in thin SC films.