Softening and Melting of Wüstite: Insights from a Multiscale Study

Qinghui Wu, Panshuai Ma, Kaihui Ma, Fuchuan Zhang, Jian Xu
{"title":"Softening and Melting of Wüstite: Insights from a Multiscale Study","authors":"Qinghui Wu, Panshuai Ma, Kaihui Ma, Fuchuan Zhang, Jian Xu","doi":"10.1007/s11663-024-03242-8","DOIUrl":null,"url":null,"abstract":"<p>Wüstite (FeO) has been extensively studied within the context of ironmaking metallurgy and the recycling of industrial waste, owing to its crucial role in high-temperature systems that exhibit softening and melting behaviors. Understanding these behaviors is vital for advancing multi-phase transport and chemical reactions in metallurgical processes. In this work, the Tammann temperature of FeO was identified to be approximately 826 K, a finding confirmed by molecular dynamics simulations and experimental validation. Below this threshold, the atoms' thermal vibration led to a volumetric expansion of the material. Conversely, surpassing 826 K triggered solid-state sintering, resulting in a noticeable shrinkage of FeO granules and the compaction of packed beds under mechanical stress. During softening, the reorganization of FeO grains was observed, with bonding commencing at contact points and the formation of sintering necks as surface atoms migrated and diffused. As temperatures rose further, this mass transfer and atomic diffusion intensified, facilitating the outward migration across grain boundaries, and culminating in the coalescence of smaller grains into larger formations.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11663-024-03242-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wüstite (FeO) has been extensively studied within the context of ironmaking metallurgy and the recycling of industrial waste, owing to its crucial role in high-temperature systems that exhibit softening and melting behaviors. Understanding these behaviors is vital for advancing multi-phase transport and chemical reactions in metallurgical processes. In this work, the Tammann temperature of FeO was identified to be approximately 826 K, a finding confirmed by molecular dynamics simulations and experimental validation. Below this threshold, the atoms' thermal vibration led to a volumetric expansion of the material. Conversely, surpassing 826 K triggered solid-state sintering, resulting in a noticeable shrinkage of FeO granules and the compaction of packed beds under mechanical stress. During softening, the reorganization of FeO grains was observed, with bonding commencing at contact points and the formation of sintering necks as surface atoms migrated and diffused. As temperatures rose further, this mass transfer and atomic diffusion intensified, facilitating the outward migration across grain boundaries, and culminating in the coalescence of smaller grains into larger formations.

Abstract Image

绿柱石的软化和熔化:多尺度研究的启示
在炼铁冶金和工业废弃物回收利用方面,人们对伍司特(FeO)进行了广泛的研究,因为它在高温系统中扮演着至关重要的角色,表现出软化和熔化行为。了解这些行为对于推进冶金过程中的多相传输和化学反应至关重要。在这项工作中,确定了氧化铁的塔曼温度约为 826 K,分子动力学模拟和实验验证证实了这一发现。低于这一临界值时,原子的热振动会导致材料体积膨胀。相反,超过 826 K 会引发固态烧结,导致氧化铁颗粒明显收缩,并在机械应力作用下压实堆积床。在软化过程中,观察到了氧化铁颗粒的重组,接触点开始结合,随着表面原子的迁移和扩散,形成了烧结颈。随着温度的进一步升高,这种质量转移和原子扩散加剧,促进了晶界的向外迁移,最终使较小的晶粒凝聚成较大的晶粒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信