Indole–thiazolidinedione–triazole hybrids: synthesis, molecular docking, absorption, distribution, metabolism and excretion (ADME) profiling, and biological evaluation as α-amylase inhibitors

IF 1.4 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Monil P Dholariya, Anilkumar S Patel
{"title":"Indole–thiazolidinedione–triazole hybrids: synthesis, molecular docking, absorption, distribution, metabolism and excretion (ADME) profiling, and biological evaluation as α-amylase inhibitors","authors":"Monil P Dholariya, Anilkumar S Patel","doi":"10.1093/chemle/upae162","DOIUrl":null,"url":null,"abstract":"A novel series of hybrid indole–thiazolidinedione–triazole derivatives (6a-l) were synthesized and assessed for their in vitro inhibitory activity against porcine pancreatic α-amylase. The synthetic procedure consists of 3 steps. A crucial step in this process involves the generation of novel target molecules using a Cu(I)-catalyzed azide–alkyne cycloaddition reaction. The α-amylase inhibition IC50 value of the targeted compounds ranged from 0.51 ± 0.02 to 7.99 ± 0.28 μM as compared with 0.68 ± 0.02 μM with acarbose as the standard drug. Using the Autodock technique, all the derivatives 6a-l were subjected to molecular docking investigations against porcine pancreatic α-amylase (PDB ID: 1OSE). Moreover, it was discovered that the docked compounds had excellent binding affinities that ranged from −10.1 to −10.8 kcal/mol as compared with the standard −7.9 kcal/mol. Additionally, a comprehensive analysis of the physicochemical and pharmacokinetic properties associated with absorption, distribution, metabolism and excretion (ADME) was conducted for all the synthesized compounds.","PeriodicalId":9862,"journal":{"name":"Chemistry Letters","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/chemle/upae162","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel series of hybrid indole–thiazolidinedione–triazole derivatives (6a-l) were synthesized and assessed for their in vitro inhibitory activity against porcine pancreatic α-amylase. The synthetic procedure consists of 3 steps. A crucial step in this process involves the generation of novel target molecules using a Cu(I)-catalyzed azide–alkyne cycloaddition reaction. The α-amylase inhibition IC50 value of the targeted compounds ranged from 0.51 ± 0.02 to 7.99 ± 0.28 μM as compared with 0.68 ± 0.02 μM with acarbose as the standard drug. Using the Autodock technique, all the derivatives 6a-l were subjected to molecular docking investigations against porcine pancreatic α-amylase (PDB ID: 1OSE). Moreover, it was discovered that the docked compounds had excellent binding affinities that ranged from −10.1 to −10.8 kcal/mol as compared with the standard −7.9 kcal/mol. Additionally, a comprehensive analysis of the physicochemical and pharmacokinetic properties associated with absorption, distribution, metabolism and excretion (ADME) was conducted for all the synthesized compounds.
吲哚-噻唑烷二酮-三唑混合物:合成、分子对接、吸收、分布、代谢和排泄(ADME)分析,以及作为α-淀粉酶抑制剂的生物学评价
本研究合成了一系列新型吲哚-噻唑烷二酮-三唑杂环衍生物(6a-l),并评估了它们对猪胰腺α-淀粉酶的体外抑制活性。合成过程包括 3 个步骤。其中一个关键步骤是利用 Cu(I)催化的叠氮-炔环化反应生成新的目标分子。与标准药物阿卡波糖的 0.68 ± 0.02 μM 相比,目标化合物的 α 淀粉酶抑制 IC50 值介于 0.51 ± 0.02 至 7.99 ± 0.28 μM 之间。利用 Autodock 技术,对所有 6a-l 衍生物与猪胰腺α-淀粉酶(PDB ID:1OSE)进行了分子对接研究。此外,研究发现,与标准的 -7.9 kcal/mol 相比,对接化合物具有极佳的结合亲和力,范围在 -10.1 至 -10.8 kcal/mol之间。此外,还对所有合成的化合物进行了与吸收、分布、代谢和排泄(ADME)相关的物理化学和药代动力学特性的综合分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry Letters
Chemistry Letters 化学-化学综合
CiteScore
3.00
自引率
6.20%
发文量
260
审稿时长
1.2 months
期刊介绍: Chemistry Letters covers the following topics: -Organic Chemistry- Physical Chemistry- Inorganic Chemistry- Analytical Chemistry- Materials Chemistry- Polymer Chemistry- Supramolecular Chemistry- Organometallic Chemistry- Coordination Chemistry- Biomolecular Chemistry- Natural Products and Medicinal Chemistry- Electrochemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信