{"title":"Deoxidation of Nickel-based Superalloy Using Carbon under High Vacuum Degree","authors":"Xu-Ze Li, Hao Feng, Hua-Bing Li, Shou-Xing Yang, Shu-Cai Zhang, Hong-Chun Zhu, Jong-Jin Pak, Zhou-Hua Jiang","doi":"10.1007/s11663-024-03258-0","DOIUrl":null,"url":null,"abstract":"<p>The vacuum carbon deoxidation process <i>via</i> CO formation has the ability to achieve high cleanliness of nickel alloys in vacuum induction melting. In the present study, the effect of vacuum degree in melting chamber, melt temperature, and initial carbon content on deoxidation efficiency was studied. The reactions of vacuum carbon deoxidization and MgO decomposition were strongly affected by chamber pressure and melt temperature. Low chamber pressure and high melt temperature resulted in a severe MgO-crucible decomposition reaction and increased oxygen supply to molten nickel alloy, and hence, decreased the deoxidation efficiency. Therefore, moderate vacuum degree in the chamber and lower melt temperature would improve the vacuum carbon deoxidation efficiency. The reaction rates of vacuum carbon deoxidization and MgO decomposition were controlled by the mass transfer of oxygen in liquid boundary layers near the reaction interfaces. The nitrogen in molten nickel alloy could be well removed together with carbon deoxidation under the vacuum conditions in the present study. A prediction model of deoxidation and carbon loss in vacuum melting process was established to determine the optimum temperature and vacuum conditions in vacuum carbon deoxidation process.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11663-024-03258-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The vacuum carbon deoxidation process via CO formation has the ability to achieve high cleanliness of nickel alloys in vacuum induction melting. In the present study, the effect of vacuum degree in melting chamber, melt temperature, and initial carbon content on deoxidation efficiency was studied. The reactions of vacuum carbon deoxidization and MgO decomposition were strongly affected by chamber pressure and melt temperature. Low chamber pressure and high melt temperature resulted in a severe MgO-crucible decomposition reaction and increased oxygen supply to molten nickel alloy, and hence, decreased the deoxidation efficiency. Therefore, moderate vacuum degree in the chamber and lower melt temperature would improve the vacuum carbon deoxidation efficiency. The reaction rates of vacuum carbon deoxidization and MgO decomposition were controlled by the mass transfer of oxygen in liquid boundary layers near the reaction interfaces. The nitrogen in molten nickel alloy could be well removed together with carbon deoxidation under the vacuum conditions in the present study. A prediction model of deoxidation and carbon loss in vacuum melting process was established to determine the optimum temperature and vacuum conditions in vacuum carbon deoxidation process.
通过 CO 生成的真空碳脱氧工艺能够在真空感应熔炼中实现镍合金的高清洁度。本研究探讨了熔炼室真空度、熔体温度和初始碳含量对脱氧效率的影响。真空碳脱氧和氧化镁分解反应受到腔室压力和熔体温度的强烈影响。低真空室压力和高熔体温度会导致严重的氧化镁脆性分解反应,增加熔融镍合金的供氧量,从而降低脱氧效率。因此,适度的真空室真空度和较低的熔体温度会提高真空碳脱氧效率。真空碳脱氧和氧化镁分解的反应速率受反应界面附近液体边界层中氧的传质控制。在本研究中,在真空条件下,熔融镍合金中的氮能与碳脱氧一起被很好地去除。建立了真空熔炼过程中脱氧和碳损失的预测模型,以确定真空碳脱氧过程中的最佳温度和真空条件。