A lattice approach to matrix weights

Zoe Nieraeth
{"title":"A lattice approach to matrix weights","authors":"Zoe Nieraeth","doi":"arxiv-2408.14666","DOIUrl":null,"url":null,"abstract":"In this paper we recontextualize the theory of matrix weights within the\nsetting of Banach lattices. We define an intrinsic notion of directional Banach\nfunction spaces, generalizing matrix weighted Lebesgue spaces. Moreover, we\nprove an extrapolation theorem for these spaces based on the boundedness of the\nconvex-set valued maximal operator. We also provide bounds and equivalences\nrelated to the convex body sparse operator. Finally, we introduce a weak-type\nanalogue of directional Banach function spaces. In particular, we show that the\nweak-type boundedness of the convex-set valued maximal operator on matrix\nweighted Lebesgue spaces is equivalent to the matrix Muckenhoupt condition,\nwith equivalent constants.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we recontextualize the theory of matrix weights within the setting of Banach lattices. We define an intrinsic notion of directional Banach function spaces, generalizing matrix weighted Lebesgue spaces. Moreover, we prove an extrapolation theorem for these spaces based on the boundedness of the convex-set valued maximal operator. We also provide bounds and equivalences related to the convex body sparse operator. Finally, we introduce a weak-type analogue of directional Banach function spaces. In particular, we show that the weak-type boundedness of the convex-set valued maximal operator on matrix weighted Lebesgue spaces is equivalent to the matrix Muckenhoupt condition, with equivalent constants.
矩阵权重的网格方法
在本文中,我们在巴拿赫网格的集合中重新构建了矩阵权重理论。我们定义了方向性巴拿赫函数空间的内在概念,概括了矩阵加权勒贝格空间。此外,我们基于凸集值最大算子的有界性,证明了这些空间的外推法定理。我们还提供了与凸体稀疏算子相关的边界和等价性。最后,我们介绍了定向巴拿赫函数空间的弱类型。特别是,我们证明了在矩阵加权的 Lebesgue 空间上,凸集值最大算子的弱型有界性等价于矩阵 Muckenhoupt 条件,并具有等价常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信