Nayak's theorem for compact operators

B V Rajarama Bhat, Neeru Bala
{"title":"Nayak's theorem for compact operators","authors":"B V Rajarama Bhat, Neeru Bala","doi":"arxiv-2408.16994","DOIUrl":null,"url":null,"abstract":"Let $A$ be an $m\\times m$ complex matrix and let $\\lambda _1, \\lambda _2,\n\\ldots , \\lambda _m$ be the eigenvalues of $A$ arranged such that $|\\lambda\n_1|\\geq |\\lambda _2|\\geq \\cdots \\geq |\\lambda _m|$ and for $n\\geq 1,$ let\n$s^{(n)}_1\\geq s^{(n)}_2\\geq \\cdots \\geq s^{(n)}_m$ be the singular values of\n$A^n$. Then a famous theorem of Yamamoto (1967) states that $$\\lim _{n\\to\n\\infty}(s^{(n)}_j )^{\\frac{1}{n}}= |\\lambda _j|, ~~\\forall \\,1\\leq j\\leq m.$$\nRecently S. Nayak strengthened this result very significantly by showing that\nthe sequence of matrices $|A^n|^{\\frac{1}{n}}$ itself converges to a positive\nmatrix $B$ whose eigenvalues are $|\\lambda _1|,|\\lambda _2|,$ $\\ldots ,\n|\\lambda _m|.$ Here this theorem has been extended to arbitrary compact\noperators on infinite dimensional complex separable Hilbert spaces. The proof\nmakes use of Nayak's theorem, Stone-Weirstrass theorem, Borel-Caratheodory\ntheorem and some technical results of Anselone and Palmer on collectively\ncompact operators. Simple examples show that the result does not hold for\ngeneral bounded operators.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $A$ be an $m\times m$ complex matrix and let $\lambda _1, \lambda _2, \ldots , \lambda _m$ be the eigenvalues of $A$ arranged such that $|\lambda _1|\geq |\lambda _2|\geq \cdots \geq |\lambda _m|$ and for $n\geq 1,$ let $s^{(n)}_1\geq s^{(n)}_2\geq \cdots \geq s^{(n)}_m$ be the singular values of $A^n$. Then a famous theorem of Yamamoto (1967) states that $$\lim _{n\to \infty}(s^{(n)}_j )^{\frac{1}{n}}= |\lambda _j|, ~~\forall \,1\leq j\leq m.$$ Recently S. Nayak strengthened this result very significantly by showing that the sequence of matrices $|A^n|^{\frac{1}{n}}$ itself converges to a positive matrix $B$ whose eigenvalues are $|\lambda _1|,|\lambda _2|,$ $\ldots , |\lambda _m|.$ Here this theorem has been extended to arbitrary compact operators on infinite dimensional complex separable Hilbert spaces. The proof makes use of Nayak's theorem, Stone-Weirstrass theorem, Borel-Caratheodory theorem and some technical results of Anselone and Palmer on collectively compact operators. Simple examples show that the result does not hold for general bounded operators.
紧凑算子的纳亚克定理
让 $A$ 是一个 $m/times m$ 复矩阵,让 $\lambda _1, \lambda _2,\ldots , \lambda _m$ 是 $A$ 的特征值,使得 $|\lambda_1|\geq |\lambda _2|geq \cdots \geq |\lambda _m|$ 排列,并且对于 $n\geq 1、让$s^{(n)}_1/geq s^{(n)}_2\geq \cdots \geq s^{(n)}_m$ 是$A^n$的奇异值。然后山本(Yamamoto,1967 年)的一个著名定理指出 $$lim _{n\to\infty}(s^{(n)}_j )^{frac{1}{n}}= |\lambda _j|, ~~\forall \,1\leq j\leq m.$$最近 S.Nayak 通过证明矩阵$|A^n|^{frac{1}{n}}$本身的序列收敛于一个正矩阵$B$,其特征值为$|\lambda _1||,|\lambda _2||,$$\ldots ,|\lambda_m|$,极大地加强了这一结果。证明中使用了纳亚克定理、斯通-韦斯特拉斯定理、伯勒-卡拉特奥多里定理以及安塞龙和帕尔默关于集合紧凑算子的一些技术结果。简单的例子表明,该结果并不成立于一般有界算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信