{"title":"A one parameter family of Volterra-type operators","authors":"Francesco Battistoni, Giuseppe Molteni","doi":"arxiv-2408.17124","DOIUrl":null,"url":null,"abstract":"For every $\\alpha \\in (0,+\\infty)$ and $p,q \\in (1,+\\infty)$ let $T_\\alpha$\nbe the operator $L^p[0,1]\\to L^q[0,1]$ defined via the equality $(T_\\alpha\nf)(x) := \\int_0^{x^\\alpha} f(y) d y$. We study the norms of $T_\\alpha$ for\nevery $p$, $q$. In the case $p=q$ we further study its spectrum, point\nspectrum, eigenfunctions, and the norms of its iterates. Moreover, for the case\n$p=q=2$ we determine the point spectrum and eigenfunctions for $T^*_\\alpha\nT_\\alpha$, where $T^*_\\alpha$ is the adjoint operator.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"314 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For every $\alpha \in (0,+\infty)$ and $p,q \in (1,+\infty)$ let $T_\alpha$
be the operator $L^p[0,1]\to L^q[0,1]$ defined via the equality $(T_\alpha
f)(x) := \int_0^{x^\alpha} f(y) d y$. We study the norms of $T_\alpha$ for
every $p$, $q$. In the case $p=q$ we further study its spectrum, point
spectrum, eigenfunctions, and the norms of its iterates. Moreover, for the case
$p=q=2$ we determine the point spectrum and eigenfunctions for $T^*_\alpha
T_\alpha$, where $T^*_\alpha$ is the adjoint operator.