Discrete Triebel-Lizorkin spaces and expansive matrices

Jordy Timo van Velthoven, Felix Voigtlaender
{"title":"Discrete Triebel-Lizorkin spaces and expansive matrices","authors":"Jordy Timo van Velthoven, Felix Voigtlaender","doi":"arxiv-2409.01849","DOIUrl":null,"url":null,"abstract":"We provide a characterization of two expansive dilation matrices yielding\nequal discrete anisotropic Triebel-Lizorkin spaces. For two such matrices $A$\nand $B$, it is shown that $\\dot{\\mathbf{f}}^{\\alpha}_{p,q}(A) =\n\\dot{\\mathbf{f}}^{\\alpha}_{p,q}(B)$ for all $\\alpha \\in \\mathbb{R}$ and $p, q\n\\in (0, \\infty]$ if and only if the set $\\{A^j B^{-j} : j \\in \\mathbb{Z}\\}$ is\nfinite, or in the trivial case when $p = q$ and $|\\det(A)|^{\\alpha + 1/2 - 1/p}\n= |\\det(B)|^{\\alpha + 1/2 - 1/p}$. This provides an extension of a result by\nTriebel for diagonal dilations to arbitrary expansive matrices. The obtained\nclassification of dilations is different from corresponding results for\nanisotropic Triebel-Lizorkin function spaces.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We provide a characterization of two expansive dilation matrices yielding equal discrete anisotropic Triebel-Lizorkin spaces. For two such matrices $A$ and $B$, it is shown that $\dot{\mathbf{f}}^{\alpha}_{p,q}(A) = \dot{\mathbf{f}}^{\alpha}_{p,q}(B)$ for all $\alpha \in \mathbb{R}$ and $p, q \in (0, \infty]$ if and only if the set $\{A^j B^{-j} : j \in \mathbb{Z}\}$ is finite, or in the trivial case when $p = q$ and $|\det(A)|^{\alpha + 1/2 - 1/p} = |\det(B)|^{\alpha + 1/2 - 1/p}$. This provides an extension of a result by Triebel for diagonal dilations to arbitrary expansive matrices. The obtained classification of dilations is different from corresponding results for anisotropic Triebel-Lizorkin function spaces.
离散 Triebel-Lizorkin 空间和扩张矩阵
我们提供了两个扩张性扩张矩阵的特征,它们产生了相等的离散各向异性特里贝尔-利佐金空间。对于两个这样的矩阵 $A$ 和 $B$,当且仅当集合 $\{A^j B^{-j} :j \in \mathbb{Z}\}$ 是无限的,或者在微不足道的情况下,当 $p = q$ 并且 $|^{det(A)|^{\alpha + 1/2 - 1/p}= |^{det(B)|^{/alpha+1/2-1/p}$。这就把特里贝尔关于对角扩张的结果推广到了任意扩张矩阵。所得到的扩张分类与各向异性特里贝尔-利佐金函数空间的相应结果不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信