A class of Berezin-type operators on weighted Fock spaces with $A_{\infty}$-type weights

Jiale Chen
{"title":"A class of Berezin-type operators on weighted Fock spaces with $A_{\\infty}$-type weights","authors":"Jiale Chen","doi":"arxiv-2409.01132","DOIUrl":null,"url":null,"abstract":"Let $0<\\alpha,\\beta,t<\\infty$ and $\\mu$ be a positive Borel measure on\n$\\mathbb{C}^n$. We consider the Berezin-type operator\n$S^{t,\\alpha,\\beta}_{\\mu}$ defined by\n$$S^{t,\\alpha,\\beta}_{\\mu}f(z):=\\left(\\int_{\\mathbb{C}^n}e^{-\\frac{\\beta}{2}|z-u|^2}|f(u)|^te^{-\\frac{\\alpha\nt}{2}|u|^2}d\\mu(u)\\right)^{1/t},\\quad z\\in\\mathbb{C}^n.$$ We completely\ncharacterize the boundedness and compactness of $S^{t,\\alpha,\\beta}_{\\mu}$ from\nthe weighted Fock space $F^p_{\\alpha,w}$ into the Lebesgue space $L^q(wdv)$ for\nall possible indices, where $w$ is a weight on $\\mathbb{C}^n$ that satisfies an\n$A_{\\infty}$-type condition. This solves an open problem raised by Zhou, Zhao\nand Tang [Banach J. Math. Anal. 18 (2024), Paper No. 20]. As an application, we\nobtain the description of the boundedness and compactness of Toeplitz-type\noperators acting between weighted Fock spaces induced by $A_{\\infty}$-type\nweights.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $0<\alpha,\beta,t<\infty$ and $\mu$ be a positive Borel measure on $\mathbb{C}^n$. We consider the Berezin-type operator $S^{t,\alpha,\beta}_{\mu}$ defined by $$S^{t,\alpha,\beta}_{\mu}f(z):=\left(\int_{\mathbb{C}^n}e^{-\frac{\beta}{2}|z-u|^2}|f(u)|^te^{-\frac{\alpha t}{2}|u|^2}d\mu(u)\right)^{1/t},\quad z\in\mathbb{C}^n.$$ We completely characterize the boundedness and compactness of $S^{t,\alpha,\beta}_{\mu}$ from the weighted Fock space $F^p_{\alpha,w}$ into the Lebesgue space $L^q(wdv)$ for all possible indices, where $w$ is a weight on $\mathbb{C}^n$ that satisfies an $A_{\infty}$-type condition. This solves an open problem raised by Zhou, Zhao and Tang [Banach J. Math. Anal. 18 (2024), Paper No. 20]. As an application, we obtain the description of the boundedness and compactness of Toeplitz-type operators acting between weighted Fock spaces induced by $A_{\infty}$-type weights.
加权 Fock 空间上一类具有 $A_{\infty}$ 类权重的贝雷津类算子
让 $0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信