Besov spaces and Schatten class Hankel operators on Paley--Wiener spaces of convex domains

Konstantinos Bampouras, Karl-Mikael Perfekt
{"title":"Besov spaces and Schatten class Hankel operators on Paley--Wiener spaces of convex domains","authors":"Konstantinos Bampouras, Karl-Mikael Perfekt","doi":"arxiv-2409.04184","DOIUrl":null,"url":null,"abstract":"We consider Schatten class membership of multi-parameter Hankel operators on\nthe Paley--Wiener space of a bounded convex domain $\\Omega$. For admissible\ndomains, we develop a framework and theory of Besov spaces of Paley--Wiener\ntype. We prove that a Hankel operator belongs to the Schatten class $S^p$ if\nand only if its symbol belongs to a corresponding Besov space, for $1 \\leq p\n\\leq 2$. For smooth domains $\\Omega$ with positive curvature, we extend this\nresult to $1 \\leq p < 4$, and for simple polytopes to the full range $1 \\leq p\n< \\infty$.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider Schatten class membership of multi-parameter Hankel operators on the Paley--Wiener space of a bounded convex domain $\Omega$. For admissible domains, we develop a framework and theory of Besov spaces of Paley--Wiener type. We prove that a Hankel operator belongs to the Schatten class $S^p$ if and only if its symbol belongs to a corresponding Besov space, for $1 \leq p \leq 2$. For smooth domains $\Omega$ with positive curvature, we extend this result to $1 \leq p < 4$, and for simple polytopes to the full range $1 \leq p < \infty$.
凸域的 Paley-Wiener 空间上的 Besov 空间和 Schatten 类汉克尔算子
我们考虑了有界凸域$\Omega$的Paley--Wiener空间上的多参数汉克尔算子的Schatten类成员资格。对于可接纳域,我们建立了一个 Paley--Wiener 型 Besov 空间的框架和理论。我们证明,当且仅当一个汉克尔算子的符号属于相应的贝索夫空间时,该算子才属于夏顿类(Schatten class)$S^p$,条件是1 \leq p\leq 2$。对于具有正曲率的光滑域$\Omega$,我们将这一结果扩展到$1 \leq p < 4$,而对于简单多面体,则扩展到整个范围$1 \leq p < \infty$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信