{"title":"Besov spaces and Schatten class Hankel operators on Paley--Wiener spaces of convex domains","authors":"Konstantinos Bampouras, Karl-Mikael Perfekt","doi":"arxiv-2409.04184","DOIUrl":null,"url":null,"abstract":"We consider Schatten class membership of multi-parameter Hankel operators on\nthe Paley--Wiener space of a bounded convex domain $\\Omega$. For admissible\ndomains, we develop a framework and theory of Besov spaces of Paley--Wiener\ntype. We prove that a Hankel operator belongs to the Schatten class $S^p$ if\nand only if its symbol belongs to a corresponding Besov space, for $1 \\leq p\n\\leq 2$. For smooth domains $\\Omega$ with positive curvature, we extend this\nresult to $1 \\leq p < 4$, and for simple polytopes to the full range $1 \\leq p\n< \\infty$.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider Schatten class membership of multi-parameter Hankel operators on
the Paley--Wiener space of a bounded convex domain $\Omega$. For admissible
domains, we develop a framework and theory of Besov spaces of Paley--Wiener
type. We prove that a Hankel operator belongs to the Schatten class $S^p$ if
and only if its symbol belongs to a corresponding Besov space, for $1 \leq p
\leq 2$. For smooth domains $\Omega$ with positive curvature, we extend this
result to $1 \leq p < 4$, and for simple polytopes to the full range $1 \leq p
< \infty$.