Weak limits of Sobolev homeomorphisms are one to one

Ondřej Bouchala, Stanislav Hencl, Zheng Zhu
{"title":"Weak limits of Sobolev homeomorphisms are one to one","authors":"Ondřej Bouchala, Stanislav Hencl, Zheng Zhu","doi":"arxiv-2409.01260","DOIUrl":null,"url":null,"abstract":"We prove that the key property in models of Nonlinear Elasticity which\ncorresponds to the non-interpenetration of matter, i.e. injectivity a.e., can\nbe achieved in the class of weak limits of homeomorphisms under very minimal\nassumptions. Let $\\Omega\\subseteq \\mathbb{R}^n$ be a domain and let\n$p>\\left\\lfloor\\frac{n}{2}\\right\\rfloor$ for $n\\geq 4$ or $p\\geq 1$ for\n$n=2,3$. Assume that $f_k\\in W^{1,p}$ is a sequence of homeomorphisms such that\n$f_k\\rightharpoonup f$ weakly in $W^{1,p}$ and assume that $J_f>0$ a.e. Then we\nshow that $f$ is injective a.e.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that the key property in models of Nonlinear Elasticity which corresponds to the non-interpenetration of matter, i.e. injectivity a.e., can be achieved in the class of weak limits of homeomorphisms under very minimal assumptions. Let $\Omega\subseteq \mathbb{R}^n$ be a domain and let $p>\left\lfloor\frac{n}{2}\right\rfloor$ for $n\geq 4$ or $p\geq 1$ for $n=2,3$. Assume that $f_k\in W^{1,p}$ is a sequence of homeomorphisms such that $f_k\rightharpoonup f$ weakly in $W^{1,p}$ and assume that $J_f>0$ a.e. Then we show that $f$ is injective a.e.
索波列同构的弱极限是一对一的
我们证明,非线性弹性模型中与物质的非穿透性相对应的关键性质,即注入性,可以在同构的弱极限类中在极小的假设条件下实现。让$Omega/subseteq \mathbb{R}^n$是一个域,让$p>/left/lfloor/frac{n}{2}/right/rfloor$为$n/geq 4$或$p/geq 1$为$n=2,3$。假设 $f_k\in W^{1,p}$ 是一个同态序列,使得 $f_k\rightharpoonup f$ 弱地在 $W^{1,p}$ 中,并假设 $J_f>0$ a.e. 然后我们证明 $f$ 是注入式的 a.e.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信