A sparse resolution of the DiPerna-Majda gap problem for $2$D Euler equations

Oscar Domínguez, Daniel Spector
{"title":"A sparse resolution of the DiPerna-Majda gap problem for $2$D Euler equations","authors":"Oscar Domínguez, Daniel Spector","doi":"arxiv-2409.02344","DOIUrl":null,"url":null,"abstract":"A central question which originates in the celebrated work in the 1980's of\nDiPerna and Majda asks what is the optimal decay $f > 0$ such that uniform\nrates $|\\omega|(Q) \\leq f(|Q|)$ of the vorticity maximal functions guarantee\nstrong convergence without concentrations of approximate solutions to\nenergy-conserving weak solutions of the $2$D Euler equations with vortex sheet\ninitial data. A famous result of Majda (1993) shows $f(r) = [\\log\n(1/r)]^{-1/2}$, $r<1/2$, as the optimal decay for \\emph{distinguished} sign\nvortex sheets. In the general setting of \\emph{mixed} sign vortex sheets,\nDiPerna and Majda (1987) established $f(r) = [\\log (1/r)]^{-\\alpha}$ with\n$\\alpha > 1$ as a sufficient condition for the lack of concentrations, while\nthe expected gap $\\alpha \\in (1/2, 1]$ remains as an open question. In this\npaper we resolve the DiPerna-Majda $2$D gap problem: In striking contrast to\nthe well-known case of distinguished sign vortex sheets, we identify $f(r) =\n[\\log (1/r)]^{-1}$ as the optimal regularity for mixed sign vortex sheets that\nrules out concentrations. For the proof, we propose a novel method to construct explicitly solutions\nwith mixed sign to the $2$D Euler equations in such a way that wild behaviour\ncreates within the relevant geometry of \\emph{sparse} cubes (i.e., these cubes\nare not necessarily pairwise disjoint, but their possible overlappings can be\ncontrolled in a sharp fashion). Such a strategy is inspired by the recent work\nof the first author and Milman \\cite{DM} where strong connections between\nenergy conservation and sparseness are established.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A central question which originates in the celebrated work in the 1980's of DiPerna and Majda asks what is the optimal decay $f > 0$ such that uniform rates $|\omega|(Q) \leq f(|Q|)$ of the vorticity maximal functions guarantee strong convergence without concentrations of approximate solutions to energy-conserving weak solutions of the $2$D Euler equations with vortex sheet initial data. A famous result of Majda (1993) shows $f(r) = [\log (1/r)]^{-1/2}$, $r<1/2$, as the optimal decay for \emph{distinguished} sign vortex sheets. In the general setting of \emph{mixed} sign vortex sheets, DiPerna and Majda (1987) established $f(r) = [\log (1/r)]^{-\alpha}$ with $\alpha > 1$ as a sufficient condition for the lack of concentrations, while the expected gap $\alpha \in (1/2, 1]$ remains as an open question. In this paper we resolve the DiPerna-Majda $2$D gap problem: In striking contrast to the well-known case of distinguished sign vortex sheets, we identify $f(r) = [\log (1/r)]^{-1}$ as the optimal regularity for mixed sign vortex sheets that rules out concentrations. For the proof, we propose a novel method to construct explicitly solutions with mixed sign to the $2$D Euler equations in such a way that wild behaviour creates within the relevant geometry of \emph{sparse} cubes (i.e., these cubes are not necessarily pairwise disjoint, but their possible overlappings can be controlled in a sharp fashion). Such a strategy is inspired by the recent work of the first author and Milman \cite{DM} where strong connections between energy conservation and sparseness are established.
2$D 欧拉方程的 DiPerna-Majda 缺口问题的稀疏解决方案
一个核心问题源于 DiPerna 和 Majda 在 20 世纪 80 年代的著名研究,即什么是最优衰减 $f > 0$,从而使涡度最大函数的统一速率 $|\omega|(Q) \leq f(|Q|)$ 能保证无集中地收敛于有涡片初始数据的 2$D 欧拉方程的能量守恒弱解的近似解。Majda (1993) 的一个著名结果表明,$f(r) = [\log(1/r)]^{-1/2}$,$r 1$ 是没有集中的充分条件,而预期差距 $\alpha \ in (1/2, 1]$ 仍然是一个未决问题。在本文中,我们解决了 DiPerna-Majda $2$D 间隙问题:与众所周知的区分符号涡旋片的情况形成鲜明对比,我们确定 $f(r) =[\log (1/r)]^{-1}$ 是混合符号涡旋片的最优正则,它排除了集中。为了证明这一点,我们提出了一种新方法,即在 2$D 欧拉方程中明确地构造具有混合符号的解,从而在相关的 \emph{sparse} 立方体几何中产生狂野行为(即这些立方体不一定是成对相交的,但它们可能的重叠可以以一种尖锐的方式加以控制)。这种策略受到了第一作者和米尔曼(Milman \cite{DM})近期工作的启发,在这些工作中,能量守恒与稀疏性之间建立了紧密的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信