Generalized Euclidean operator radius inequalities of a pair of bounded linear operators

Suvendu Jana
{"title":"Generalized Euclidean operator radius inequalities of a pair of bounded linear operators","authors":"Suvendu Jana","doi":"arxiv-2409.02235","DOIUrl":null,"url":null,"abstract":"Let $ \\mathbb{B}(\\mathscr{H})$ represent the $C^*$-algebra, which consists of\nall bounded linear operators on $\\mathscr{H},$ and let $N ( .) $ be a norm on $\n\\mathbb{B}(\\mathscr{H})$. We define a norm $w_{(N,e)} (. , . )$ on $\n\\mathbb{B}^2(\\mathscr{H})$ by $$\nw_{(N,e)}(B,C)=\\underset{|\\lambda_1|^2+\\lambda_2|^2\\leq1}\\sup\n\\underset{\\theta\\in\\mathbb{R}}\\sup N\\left(\\Re\n\\left(e^{i\\theta}(\\lambda_1B+\\lambda_2C)\\right)\\right),$$ for every\n$B,C\\in\\mathbb{B}(\\mathscr{H})$ and $\\lambda_1,\\lambda_2\\in\\mathbb{C}.$ We\ninvestigate basic properties of this norm and prove some bounds involving it.\nIn particular, when $N( .)$ is the Hilbert-Schmidt norm, we prove some\nHilbert-Schmidt Euclidean operator radius inequalities for a pair of bounded\nlinear operators.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $ \mathbb{B}(\mathscr{H})$ represent the $C^*$-algebra, which consists of all bounded linear operators on $\mathscr{H},$ and let $N ( .) $ be a norm on $ \mathbb{B}(\mathscr{H})$. We define a norm $w_{(N,e)} (. , . )$ on $ \mathbb{B}^2(\mathscr{H})$ by $$ w_{(N,e)}(B,C)=\underset{|\lambda_1|^2+\lambda_2|^2\leq1}\sup \underset{\theta\in\mathbb{R}}\sup N\left(\Re \left(e^{i\theta}(\lambda_1B+\lambda_2C)\right)\right),$$ for every $B,C\in\mathbb{B}(\mathscr{H})$ and $\lambda_1,\lambda_2\in\mathbb{C}.$ We investigate basic properties of this norm and prove some bounds involving it. In particular, when $N( .)$ is the Hilbert-Schmidt norm, we prove some Hilbert-Schmidt Euclidean operator radius inequalities for a pair of bounded linear operators.
一对有界线性算子的广义欧氏算子半径不等式
让 $ \mathbb{B}(\mathscr{H})$ 表示 $C^*$-代数,它由 $\mathscr{H} 上的所有有界线性算子组成,并让 $N ( .) $ 是 $\mathbb{B}(\mathscr{H})$ 上的一个规范。我们定义一个在 $\mathbb{B}(\mathscr{H} $ 上的规范 $w_{(N,e)} (. , .)$ on $\mathbb{B}^2(\mathscr{H})$ by $$w_{(N,e)}(B. C)=\underset{B、C)=underset{|\lambda_1|^2+\lambda_2|^2\leq1}\supunderset{theta\in\mathbb{R}}\sup N\left(\Re\left(e^{i\theta}(\lambda_1B+\lambda_2C)\right)\right)、$$ for every$B,Cin\mathbb{B}(\mathscr{H})$ and $\lambda_1,\lambda_2\in\mathbb{C}.特别是,当 $N( .)$ 是希尔伯特-施密特规范时,我们证明了一对有界线性算子的一些希尔伯特-施密特欧几里得算子半径不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信