When is the Szlenk derivation of a dual unit ball another ball?

Tomasz Kochanek, Marek Miarka
{"title":"When is the Szlenk derivation of a dual unit ball another ball?","authors":"Tomasz Kochanek, Marek Miarka","doi":"arxiv-2409.05516","DOIUrl":null,"url":null,"abstract":"We show that if a separable Banach space has Kalton's property $(M^\\ast)$,\nthen all $\\varepsilon$-Szlenk derivations of the dual unit ball are balls,\nhowever, in the case of the dual of Baernstein's space, all those Szlenk\nderivations are balls having the same radius as for $\\ell_2$, yet this space\nfails property $(M^\\ast)$. By estimating the radii of enveloping balls, we show\nthat the Szlenk derivations are not balls for Tsirelson's space and the dual of\nSchlumprecht's space. Using the Karush-Kuhn-Tucker theorem we prove that the\nsame is true for the duals of certain sequential Orlicz spaces.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that if a separable Banach space has Kalton's property $(M^\ast)$, then all $\varepsilon$-Szlenk derivations of the dual unit ball are balls, however, in the case of the dual of Baernstein's space, all those Szlenk derivations are balls having the same radius as for $\ell_2$, yet this space fails property $(M^\ast)$. By estimating the radii of enveloping balls, we show that the Szlenk derivations are not balls for Tsirelson's space and the dual of Schlumprecht's space. Using the Karush-Kuhn-Tucker theorem we prove that the same is true for the duals of certain sequential Orlicz spaces.
什么时候对偶单位球的 Szlenk 派生才是另一个球?
我们证明,如果一个可分离的巴拿赫空间具有卡尔顿性质 $(M^\ast)$,那么对偶单位球的所有 $\varepsilon$-Szlenk 衍射都是球,然而,在贝恩斯坦空间的对偶中,所有这些 Szlenk 衍射都是球,其半径与 $\ell_2$ 的半径相同,然而这个空间却不具有性质 $(M^\ast)$。通过估计包络球的半径,我们证明了对于齐雷尔森空间和施伦普雷希特空间的对偶来说,斯兹伦克衍生不是球。利用卡鲁什-库恩-塔克定理,我们证明了某些连续奥利奇空间的对偶也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信