Maximal hyperplane sections of the unit ball of $l_p$ for $p>2$

Hermann König
{"title":"Maximal hyperplane sections of the unit ball of $l_p$ for $p>2$","authors":"Hermann König","doi":"arxiv-2409.06432","DOIUrl":null,"url":null,"abstract":"The maximal hyperplane section of the $l_\\infty^n$-ball, i.e. of the\n$n$-cube, is the one perpendicular to 1/sqrt 2 (1,1,0, ... ,0), as shown by\nBall. Eskenazis, Nayar and Tkocz extended this result to the $l_p^n$-balls for\nvery large $p \\ge 10^{15}$. We show that the analogue of Ball's result\nessentially holds for all $26.265 \\simeq p_0 \\le p < \\infty$. By Oleszkiewicz,\nBall's result does not transfer to $l_p^n$ for $2 < p < p_0$. Then the\nhyperplane section perpendicular to the main diagonal yields a counterexample\nfor large dimensions $n$. In this case, we give an asymptotic upper bound for\n$20 < p < p_0$.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The maximal hyperplane section of the $l_\infty^n$-ball, i.e. of the $n$-cube, is the one perpendicular to 1/sqrt 2 (1,1,0, ... ,0), as shown by Ball. Eskenazis, Nayar and Tkocz extended this result to the $l_p^n$-balls for very large $p \ge 10^{15}$. We show that the analogue of Ball's result essentially holds for all $26.265 \simeq p_0 \le p < \infty$. By Oleszkiewicz, Ball's result does not transfer to $l_p^n$ for $2 < p < p_0$. Then the hyperplane section perpendicular to the main diagonal yields a counterexample for large dimensions $n$. In this case, we give an asymptotic upper bound for $20 < p < p_0$.
在 $p>2$ 时,单位球 $l_p$ 的最大超平面截面
正如鲍尔所证明的,$l_infty^n$球,即$n$立方体的最大超平面截面是垂直于 1/sqrt 2 (1,1,0, ... ,0)的截面。Eskenazis, Nayar 和 Tkocz 将这一结果扩展到了非常大的 $p \ge 10^{15}$ 的 $l_p^n$-球。我们证明,波尔的类似结果基本上对所有 $26.265 \simeq p_0 \le p < \infty$都成立。根据 Oleszkiewicz 的观点,波尔的结果在 $2 < p < p_0$ 时并不转移到 $l_p^n$。那么,垂直于主对角线的超平面截面在维数 $n$ 较大时会产生一个反例。在这种情况下,我们给出了$20 < p < p_0$ 的渐近上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信