The $H^\infty$-functional calculus for bisectorial Clifford operators

Francesco Mantovani, Peter Schlosser
{"title":"The $H^\\infty$-functional calculus for bisectorial Clifford operators","authors":"Francesco Mantovani, Peter Schlosser","doi":"arxiv-2409.07249","DOIUrl":null,"url":null,"abstract":"The aim of this article is to introduce the H-infinity functional calculus\nfor unbounded bisectorial operators in a Clifford module over the algebra R_n.\nWhile recent studies have focused on bounded operators or unbounded paravector\noperators, we now investigate unbounded fully Clifford operators and define\npolynomially growing functions of them. We first generate the omega-functional\ncalculus for functions that exhibit an appropriate decay at zero and at\ninfinity. We then extend to functions with a finite value at zero and at\ninfinity. Finally, using a subsequent regularization procedure, we can define\nthe H-infinity functional calculus for the class of regularizable functions,\nwhich in particular include functions with polynomial growth at infinity and,\nif T is injective, also functions with polynomial growth at zero.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this article is to introduce the H-infinity functional calculus for unbounded bisectorial operators in a Clifford module over the algebra R_n. While recent studies have focused on bounded operators or unbounded paravector operators, we now investigate unbounded fully Clifford operators and define polynomially growing functions of them. We first generate the omega-functional calculus for functions that exhibit an appropriate decay at zero and at infinity. We then extend to functions with a finite value at zero and at infinity. Finally, using a subsequent regularization procedure, we can define the H-infinity functional calculus for the class of regularizable functions, which in particular include functions with polynomial growth at infinity and, if T is injective, also functions with polynomial growth at zero.
双向克利福德算子的 $H^\infty$ 函数微积分
本文旨在介绍代数 R_n 上克利福德模中无界二叉算子的 H-infinity 函数微积分。最近的研究主要集中于有界算子或无界旁向量算子,而我们现在研究的是无界全克利福德算子,并定义它们的波函数。我们首先为在零点和无限点表现出适当衰减的函数生成欧米伽函数微积分。然后,我们将其扩展到在零点和无限点具有有限值的函数。最后,利用随后的正则化过程,我们可以为一类可正则化函数定义 H-infinity 函数微积分,这一类函数尤其包括在无穷处具有多项式增长的函数,如果 T 是注入式的,还包括在零处具有多项式增长的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信