Why Groups Matter: Necessity of Group Structures in Attributions

Dangxing Chen, Jingfeng Chen, Weicheng Ye
{"title":"Why Groups Matter: Necessity of Group Structures in Attributions","authors":"Dangxing Chen, Jingfeng Chen, Weicheng Ye","doi":"arxiv-2408.05701","DOIUrl":null,"url":null,"abstract":"Explainable machine learning methods have been accompanied by substantial\ndevelopment. Despite their success, the existing approaches focus more on the\ngeneral framework with no prior domain expertise. High-stakes financial sectors\nhave extensive domain knowledge of the features. Hence, it is expected that\nexplanations of models will be consistent with domain knowledge to ensure\nconceptual soundness. In this work, we study the group structures of features that are naturally\nformed in the financial dataset. Our study shows the importance of considering\ngroup structures that conform to the regulations. When group structures are\npresent, direct applications of explainable machine learning methods, such as\nShapley values and Integrated Gradients, may not provide consistent\nexplanations; alternatively, group versions of the Shapley value can provide\nconsistent explanations. We contain detailed examples to concentrate on the\npractical perspective of our framework.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Explainable machine learning methods have been accompanied by substantial development. Despite their success, the existing approaches focus more on the general framework with no prior domain expertise. High-stakes financial sectors have extensive domain knowledge of the features. Hence, it is expected that explanations of models will be consistent with domain knowledge to ensure conceptual soundness. In this work, we study the group structures of features that are naturally formed in the financial dataset. Our study shows the importance of considering group structures that conform to the regulations. When group structures are present, direct applications of explainable machine learning methods, such as Shapley values and Integrated Gradients, may not provide consistent explanations; alternatively, group versions of the Shapley value can provide consistent explanations. We contain detailed examples to concentrate on the practical perspective of our framework.
群体为何重要?群体结构在归因中的必要性
可解释的机器学习方法得到了长足的发展。尽管这些方法取得了成功,但现有的方法更侧重于一般框架,事先并不具备领域专业知识。高风险的金融行业拥有广泛的特征领域知识。因此,我们希望模型的解释与领域知识保持一致,以确保概念的合理性。在这项工作中,我们研究了金融数据集中自然形成的特征组结构。我们的研究表明,考虑符合法规的群体结构非常重要。当存在群体结构时,直接应用可解释的机器学习方法(如夏普利值和综合梯度)可能无法提供一致的解释;或者,夏普利值的群体版本可以提供一致的解释。我们包含了详细的示例,以集中展示我们框架的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信