An improved Takagi–Sugeon–Kang-based FxLMS algorithm and its active noise control in electric bus driving position

IF 2.3 3区 工程技术 Q2 ACOUSTICS
Enlai Zhang, Zhilong Peng, Yi Chen, Qian Chen, Jianming Zhuo
{"title":"An improved Takagi–Sugeon–Kang-based FxLMS algorithm and its active noise control in electric bus driving position","authors":"Enlai Zhang, Zhilong Peng, Yi Chen, Qian Chen, Jianming Zhuo","doi":"10.1177/10775463241276970","DOIUrl":null,"url":null,"abstract":"This paper proposed an improved filtered-x least mean square (FxLMS) algorithm based on the fuzzy control rule of Takagi–Sugeon–Kang (TSK) to solve the drawback of slow convergence for standard FxLMS algorithm. The TSK-FxLMS is a control framework with two inputs and three outputs constructed by the error signal and its integral as input variables. To validate its effectiveness and applicability, in-vehicle active noise control (ANC) modelling and adaptive noise reduction at the driver’s position of an electric bus are thoroughly investigated. Firstly, the four noise signals for the different working conditions at 50 km/h, acceleration, coasting and braking are collected, and their spectral analyses are performed. Secondly, the effects of step size and fuzzy control parameters of ANC model on weight convergence and noise reduction effect are analysed and determined. Finally, the results of calculating and comparing the residual signals’ waveforms, frequency spectra, sound pressure levels and tracking performance indicate that the proposed TSK-FxLMS algorithm outperforms the standard FxLMS algorithm with faster convergence and better noise reduction effect.","PeriodicalId":17511,"journal":{"name":"Journal of Vibration and Control","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10775463241276970","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposed an improved filtered-x least mean square (FxLMS) algorithm based on the fuzzy control rule of Takagi–Sugeon–Kang (TSK) to solve the drawback of slow convergence for standard FxLMS algorithm. The TSK-FxLMS is a control framework with two inputs and three outputs constructed by the error signal and its integral as input variables. To validate its effectiveness and applicability, in-vehicle active noise control (ANC) modelling and adaptive noise reduction at the driver’s position of an electric bus are thoroughly investigated. Firstly, the four noise signals for the different working conditions at 50 km/h, acceleration, coasting and braking are collected, and their spectral analyses are performed. Secondly, the effects of step size and fuzzy control parameters of ANC model on weight convergence and noise reduction effect are analysed and determined. Finally, the results of calculating and comparing the residual signals’ waveforms, frequency spectra, sound pressure levels and tracking performance indicate that the proposed TSK-FxLMS algorithm outperforms the standard FxLMS algorithm with faster convergence and better noise reduction effect.
基于 Takagi-Sugeon-Kang 的改进型 FxLMS 算法及其在电动公交车驾驶位置的主动噪声控制
本文提出了一种基于高木-苏根-康(Takagi-Sugeon-Kang,TSK)模糊控制规则的改进过滤x最小均方(FxLMS)算法,以解决标准FxLMS算法收敛速度慢的缺点。TSK-FxLMS 是一个由误差信号及其积分作为输入变量构建的两输入三输出的控制框架。为了验证其有效性和适用性,对电动公交车驾驶员位置的车内主动噪声控制(ANC)建模和自适应降噪进行了深入研究。首先,收集了 50 公里/小时、加速、滑行和制动等不同工况下的四种噪声信号,并对其进行了频谱分析。其次,分析并确定 ANC 模型的步长和模糊控制参数对权重收敛和降噪效果的影响。最后,计算和比较了残余信号的波形、频谱、声压级和跟踪性能,结果表明所提出的 TSK-FxLMS 算法优于标准 FxLMS 算法,收敛速度更快,降噪效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Vibration and Control
Journal of Vibration and Control 工程技术-工程:机械
CiteScore
5.20
自引率
17.90%
发文量
336
审稿时长
6 months
期刊介绍: The Journal of Vibration and Control is a peer-reviewed journal of analytical, computational and experimental studies of vibration phenomena and their control. The scope encompasses all linear and nonlinear vibration phenomena and covers topics such as: vibration and control of structures and machinery, signal analysis, aeroelasticity, neural networks, structural control and acoustics, noise and noise control, waves in solids and fluids and shock waves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信