Vibro-acoustic characteristics of rectangular plates with any number of point masses and translational springs

IF 2.3 3区 工程技术 Q2 ACOUSTICS
Weilong Liu, Yijie He, Ziyuan Zhu, Feng Chen, Gang Wang
{"title":"Vibro-acoustic characteristics of rectangular plates with any number of point masses and translational springs","authors":"Weilong Liu, Yijie He, Ziyuan Zhu, Feng Chen, Gang Wang","doi":"10.1177/10775463241281766","DOIUrl":null,"url":null,"abstract":"In this paper, the vibration and the sound radiation characteristics of a rectangular plate loaded with concentrated masses and translational springs are analyzed using the Rayleigh-Ritz solution, in which the modified Fourier series is used to describe the vibration displacements of the structure. Arbitrary boundary conditions are simulated by artificial virtual spring technique. The vibro-acoustic field coupling model is developed and the accuracy of the present method is validated by several numerical examples. The effect of different parameters on the vibration response and sound radiation power of the coupled model is discussed, including plate parameters, point mass and translational spring size, position and number, as well as the location of that point where the excitation force acts. The method and its analysis results can be used for vibro-acoustic coupling analysis and control of rectangular plates.","PeriodicalId":17511,"journal":{"name":"Journal of Vibration and Control","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10775463241281766","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the vibration and the sound radiation characteristics of a rectangular plate loaded with concentrated masses and translational springs are analyzed using the Rayleigh-Ritz solution, in which the modified Fourier series is used to describe the vibration displacements of the structure. Arbitrary boundary conditions are simulated by artificial virtual spring technique. The vibro-acoustic field coupling model is developed and the accuracy of the present method is validated by several numerical examples. The effect of different parameters on the vibration response and sound radiation power of the coupled model is discussed, including plate parameters, point mass and translational spring size, position and number, as well as the location of that point where the excitation force acts. The method and its analysis results can be used for vibro-acoustic coupling analysis and control of rectangular plates.
带有任意数量点质量和平移弹簧的矩形板的振动声学特性
本文采用雷利-里兹(Rayleigh-Ritz)解法分析了装有集中质量块和平移弹簧的矩形板的振动和声辐射特性,其中使用了修正的傅里叶级数来描述结构的振动位移。采用人工虚拟弹簧技术模拟任意边界条件。建立了振动声场耦合模型,并通过几个数值实例验证了本方法的准确性。讨论了不同参数对耦合模型的振动响应和声辐射功率的影响,包括板参数、点质量和平移弹簧的尺寸、位置和数量,以及激振力作用点的位置。该方法及其分析结果可用于矩形板的振声耦合分析和控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Vibration and Control
Journal of Vibration and Control 工程技术-工程:机械
CiteScore
5.20
自引率
17.90%
发文量
336
审稿时长
6 months
期刊介绍: The Journal of Vibration and Control is a peer-reviewed journal of analytical, computational and experimental studies of vibration phenomena and their control. The scope encompasses all linear and nonlinear vibration phenomena and covers topics such as: vibration and control of structures and machinery, signal analysis, aeroelasticity, neural networks, structural control and acoustics, noise and noise control, waves in solids and fluids and shock waves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信