{"title":"Tree characteristics, drought and microtopography modulate the response of subtropical Cunninghamia lanceolata to drought","authors":"Ruiting Liang, Yujun Sun, Zhaoting zhu, Rui Li","doi":"10.1007/s10342-024-01728-3","DOIUrl":null,"url":null,"abstract":"<p>Knowledge of how different drivers affect tree responses to drought is unprecedentedly imperative in the context of increasing frequency and severity of climatic droughts. Here, to fully understand the drought response complexity of trees, we assessed drought resilience (resistance and recovery) for Chinese fir (<i>Cunninghamia lanceolata</i>) in Southeast China based on tree ring from 324 trees, and used mixed effects model and machine learning (ML) to examine the roles of tree size, predrought growth performances, multiple drought dimensions, and microtopography in affecting tree drought responses. ML were interpreted using a novel of SHapley Additive exPlanations (SHAP) method. Tree responses to drought were primarily driven by tree characteristics (tree size and predrought growth), rather than drought dimensions (intensity, duration and occurrence Timing) and microtopography (elevation and slope aspect). Resistance and resilience increased with tree size and pre-drought growth variability but decreased with drought intensity- quantified by negative climate water balance. Recovery increased with predrought growth rates but decreased with drought duration. The drought intensity threshold for trees fully recovery of tree growth was about -80 mm. Higher elevations and shady slopes favored resistance (resilience) and recovery respectively, which combined with a greater impact of drought in the dry season suggested that the trees suffered more from droughts that only occurred in the dry season, especially at low- and medium-elevation sunny slopes. This study provided a comprehensive insight into tree growth response to drought, and contributed to the understanding of the mechanisms underlying the complexity of drought response. Increasing size diversity in Chinese fir plantations at sunny lower-elevation slopes is a promising measure to cope with the negative effects of drought.</p>","PeriodicalId":11996,"journal":{"name":"European Journal of Forest Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Forest Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10342-024-01728-3","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Knowledge of how different drivers affect tree responses to drought is unprecedentedly imperative in the context of increasing frequency and severity of climatic droughts. Here, to fully understand the drought response complexity of trees, we assessed drought resilience (resistance and recovery) for Chinese fir (Cunninghamia lanceolata) in Southeast China based on tree ring from 324 trees, and used mixed effects model and machine learning (ML) to examine the roles of tree size, predrought growth performances, multiple drought dimensions, and microtopography in affecting tree drought responses. ML were interpreted using a novel of SHapley Additive exPlanations (SHAP) method. Tree responses to drought were primarily driven by tree characteristics (tree size and predrought growth), rather than drought dimensions (intensity, duration and occurrence Timing) and microtopography (elevation and slope aspect). Resistance and resilience increased with tree size and pre-drought growth variability but decreased with drought intensity- quantified by negative climate water balance. Recovery increased with predrought growth rates but decreased with drought duration. The drought intensity threshold for trees fully recovery of tree growth was about -80 mm. Higher elevations and shady slopes favored resistance (resilience) and recovery respectively, which combined with a greater impact of drought in the dry season suggested that the trees suffered more from droughts that only occurred in the dry season, especially at low- and medium-elevation sunny slopes. This study provided a comprehensive insight into tree growth response to drought, and contributed to the understanding of the mechanisms underlying the complexity of drought response. Increasing size diversity in Chinese fir plantations at sunny lower-elevation slopes is a promising measure to cope with the negative effects of drought.
期刊介绍:
The European Journal of Forest Research focuses on publishing innovative results of empirical or model-oriented studies which contribute to the development of broad principles underlying forest ecosystems, their functions and services.
Papers which exclusively report methods, models, techniques or case studies are beyond the scope of the journal, while papers on studies at the molecular or cellular level will be considered where they address the relevance of their results to the understanding of ecosystem structure and function. Papers relating to forest operations and forest engineering will be considered if they are tailored within a forest ecosystem context.