Homogenization of a Porous Intercalation Electrode with Phase Separation

Martin Heida, Manuel Landstorfer, Matthias Liero
{"title":"Homogenization of a Porous Intercalation Electrode with Phase Separation","authors":"Martin Heida, Manuel Landstorfer, Matthias Liero","doi":"10.1137/21m1466189","DOIUrl":null,"url":null,"abstract":"Multiscale Modeling &amp;Simulation, Volume 22, Issue 3, Page 1068-1096, September 2024. <br/> Abstract. In this work, we derive a homogenized mathematical model for a porous intercalation electrode with a phase separating active material. We start from a microscopic model consisting of transport equations for lithium ions in an electrolyte phase and intercalated lithium in a solid active phase. Both are coupled through a Neumann–boundary condition modeling the lithium intercalation reaction [math]. The active material phase is considered to be phase separating upon lithium intercalation. We assume that the porous material is a given periodic microstructure and perform analytical homogenization. Effectively, the microscopic model consists of a diffusion and a Cahn–Hilliard equation, whereas the limit model consists of a diffusion and an Allen–Cahn equation. Thus, we observe a Cahn–Hilliard to Allen–Cahn transition during the upscaling process. In the sense of gradient flows, the transition coincides with a change in the underlying metric structure of the PDE system.","PeriodicalId":501053,"journal":{"name":"Multiscale Modeling and Simulation","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1466189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiscale Modeling &Simulation, Volume 22, Issue 3, Page 1068-1096, September 2024.
Abstract. In this work, we derive a homogenized mathematical model for a porous intercalation electrode with a phase separating active material. We start from a microscopic model consisting of transport equations for lithium ions in an electrolyte phase and intercalated lithium in a solid active phase. Both are coupled through a Neumann–boundary condition modeling the lithium intercalation reaction [math]. The active material phase is considered to be phase separating upon lithium intercalation. We assume that the porous material is a given periodic microstructure and perform analytical homogenization. Effectively, the microscopic model consists of a diffusion and a Cahn–Hilliard equation, whereas the limit model consists of a diffusion and an Allen–Cahn equation. Thus, we observe a Cahn–Hilliard to Allen–Cahn transition during the upscaling process. In the sense of gradient flows, the transition coincides with a change in the underlying metric structure of the PDE system.
带有相分离的多孔夹层电极的均质化
多尺度建模与仿真》,第 22 卷第 3 期,第 1068-1096 页,2024 年 9 月。 摘要在这项研究中,我们推导出了一个具有相分离活性材料的多孔插层电极的均质化数学模型。我们从一个微观模型出发,该模型由电解质相中的锂离子和固体活性相中的插层锂的传输方程组成。两者通过诺依曼边界条件耦合,模拟锂插层反应[数学]。活性材料相被认为在锂插层时发生相分离。我们假设多孔材料是一种给定的周期性微结构,并对其进行分析均质化。实际上,微观模型由扩散和 Cahn-Hilliard 方程组成,而极限模型由扩散和 Allen-Cahn 方程组成。因此,我们观察到在升级过程中,卡恩-希利亚德方程向艾伦-卡恩方程的过渡。从梯度流的意义上讲,这一转变与 PDE 系统底层度量结构的变化相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信