{"title":"USP33 facilitates the ovarian cancer progression via deubiquitinating and stabilizing CBX2","authors":"Jiming Chen, Wulin Shan, Qiucheng Jia, Yao Chen, Wenjing Jiang, Yuan Tian, Xu Huang, Xiaoyu Li, Zengying Wang, Bairong Xia","doi":"10.1038/s41388-024-03151-9","DOIUrl":null,"url":null,"abstract":"Post-translational modifications of proteins play a pivotal role in both the initiation and progression of ovarian cancer. Despite the recognition of USP33 as a significant factor in various cancers, its specific function and underlying mechanisms in ovarian cancer remain elusive. Proteomics and ubiquitinomics approaches were coupled to screen novel substrate proteins directly regulated by USP33. Our findings unveil that USP33 was observed to eliminate K27- and K48-linked ubiquitin chains from CBX2 at the K277 position. Notably, acetylation of CBX2 at K199, catalyzed by lysine acetyltransferase GCN5, was found to enhance its interaction with USP33, subsequently promoting further deubiquitination and stabilization. Functionally, our experiments demonstrate that USP33 significantly enhances ovarian cancer proliferation and metastasis in a CBX2-dependent manner. Furthermore, analysis revealed a direct positive correlation between the expression levels of USP33 and CBX2 proteins in human specimens, with elevated levels being associated with reduced survival rates in ovarian cancer patients. These findings elucidate the mechanism by which USP33 augments ovarian cancer progression through the stabilization of CBX2, underscoring the USP33-CBX2 axis as a promising therapeutic target in ovarian cancer management.","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41388-024-03151-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41388-024-03151-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Post-translational modifications of proteins play a pivotal role in both the initiation and progression of ovarian cancer. Despite the recognition of USP33 as a significant factor in various cancers, its specific function and underlying mechanisms in ovarian cancer remain elusive. Proteomics and ubiquitinomics approaches were coupled to screen novel substrate proteins directly regulated by USP33. Our findings unveil that USP33 was observed to eliminate K27- and K48-linked ubiquitin chains from CBX2 at the K277 position. Notably, acetylation of CBX2 at K199, catalyzed by lysine acetyltransferase GCN5, was found to enhance its interaction with USP33, subsequently promoting further deubiquitination and stabilization. Functionally, our experiments demonstrate that USP33 significantly enhances ovarian cancer proliferation and metastasis in a CBX2-dependent manner. Furthermore, analysis revealed a direct positive correlation between the expression levels of USP33 and CBX2 proteins in human specimens, with elevated levels being associated with reduced survival rates in ovarian cancer patients. These findings elucidate the mechanism by which USP33 augments ovarian cancer progression through the stabilization of CBX2, underscoring the USP33-CBX2 axis as a promising therapeutic target in ovarian cancer management.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.