Energy-efficient optimization for distributed blocking hybrid flowshop scheduling: a self-regulating iterative greedy algorithm under makespan constraint

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yong Wang, Yuyan Han, Yuting Wang, Yiping Liu
{"title":"Energy-efficient optimization for distributed blocking hybrid flowshop scheduling: a self-regulating iterative greedy algorithm under makespan constraint","authors":"Yong Wang, Yuyan Han, Yuting Wang, Yiping Liu","doi":"10.1007/s11081-024-09911-6","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates an energy-efficient distributed blocking hybrid flowshop scheduling problem, constrained by the makespan upper-bound criterion. This problem is an extension of the distributed hybrid flowshop scheduling problem and closely resembles practical production scenarios, denoted as <span>\\(DHF_{m} \\left| {block} \\right|\\varepsilon \\left( {{{TEC} \\mathord{\\left/ {\\vphantom {{TEC} {C_{{max}} }}} \\right. \\kern-\\nulldelimiterspace} {C_{{max}} }}} \\right)\\)</span>. Initially, we formulate the issue into a mixed integer linear programming (MILP) model that reflects its unique characteristics and leverage the Gurobi solver for validation purposes. Building upon this groundwork, we develop a self-regulating iterative greedy (SIG) algorithm, designed to autonomously fine-tune its strategies and parameters in response to the quality of solutions derived during iterative processes. Within the SIG, we design a double-layer destruction-reconstruction, accompanied by a self-regulating variable neighborhood descent strategy, to facilitate the exploration of diverse search spaces and augment the global search capability of the algorithm. To evaluate the performance of the proposed algorithm, we implement an extensive series of simulation experiments. Based on the experimental result, the average total energy consumption and relative percentage increase obtained by SIG are 2.12 and 82% better than the four comparison algorithms, respectively. These statistics underscore SIG’s superior performance in addressing <span>\\(DHF_{m} \\left| {block} \\right|\\varepsilon \\left( {{{TEC} \\mathord{\\left/ {\\vphantom {{TEC} {C_{{max}} }}} \\right. \\kern-\\nulldelimiterspace} {C_{{max}} }}} \\right)\\)</span> compared to the other algorithms, thus offering a novel reference for decision-makers.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11081-024-09911-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates an energy-efficient distributed blocking hybrid flowshop scheduling problem, constrained by the makespan upper-bound criterion. This problem is an extension of the distributed hybrid flowshop scheduling problem and closely resembles practical production scenarios, denoted as \(DHF_{m} \left| {block} \right|\varepsilon \left( {{{TEC} \mathord{\left/ {\vphantom {{TEC} {C_{{max}} }}} \right. \kern-\nulldelimiterspace} {C_{{max}} }}} \right)\). Initially, we formulate the issue into a mixed integer linear programming (MILP) model that reflects its unique characteristics and leverage the Gurobi solver for validation purposes. Building upon this groundwork, we develop a self-regulating iterative greedy (SIG) algorithm, designed to autonomously fine-tune its strategies and parameters in response to the quality of solutions derived during iterative processes. Within the SIG, we design a double-layer destruction-reconstruction, accompanied by a self-regulating variable neighborhood descent strategy, to facilitate the exploration of diverse search spaces and augment the global search capability of the algorithm. To evaluate the performance of the proposed algorithm, we implement an extensive series of simulation experiments. Based on the experimental result, the average total energy consumption and relative percentage increase obtained by SIG are 2.12 and 82% better than the four comparison algorithms, respectively. These statistics underscore SIG’s superior performance in addressing \(DHF_{m} \left| {block} \right|\varepsilon \left( {{{TEC} \mathord{\left/ {\vphantom {{TEC} {C_{{max}} }}} \right. \kern-\nulldelimiterspace} {C_{{max}} }}} \right)\) compared to the other algorithms, thus offering a novel reference for decision-makers.

Abstract Image

分布式阻塞混合流程车间调度的高能效优化:有效期约束下的自我调节迭代贪婪算法
本文研究了一个受制于补间上限准则的高能效分布式阻塞混合流动车间调度问题。该问题是分布式混合流动车间调度问题的扩展,与实际生产场景非常相似,表示为 \(DHF_{m}\left| {block}\right|\varepsilon \left( {{{TEC}\mathord\{left/ {\vphantom {{TEC}{C_{{max}}}}}\right.\kern-\nulldelimiterspace} {C_{{max}} }} \right.{C_{{max}}}}}\right)\).起初,我们将问题表述为一个混合整数线性规划(MILP)模型,以反映其独特性,并利用 Gurobi 求解器进行验证。在此基础上,我们开发了一种自我调节迭代贪婪(SIG)算法,旨在根据迭代过程中得出的解决方案的质量,自主微调其策略和参数。在 SIG 算法中,我们设计了一种双层破坏-重建算法,并辅以自我调节的可变邻域下降策略,以促进对不同搜索空间的探索,并增强算法的全局搜索能力。为了评估所提算法的性能,我们进行了一系列广泛的模拟实验。根据实验结果,SIG 算法的平均总能耗和相对百分比增长分别比四种对比算法高出 2.12% 和 82%。这些数据凸显了 SIG 在解决 \(DHF_{m} \left| {block} 问题上的卓越性能。\left| {block}\right|\varepsilon \left( {{{TEC}\mathord\{left/ {\vphantom {{TEC}{C_{{max}}}}}\right.\kern-\nulldelimiterspace} {C_{{max}} }} \right.{C_{{max}}}}}\)相比,为决策者提供了新的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信