Parametric process optimisation of automated fibre placement (AFP) based AS4/APC-2 composites for mode I and mode II fracture toughness

IF 2.3 3区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
Shafaq Shafaq, Matthew J Donough, Ebrahim Oromiehie, Faisal Islam, Andrew W Phillips, Nigel A St John, B Gangadhara Prusty
{"title":"Parametric process optimisation of automated fibre placement (AFP) based AS4/APC-2 composites for mode I and mode II fracture toughness","authors":"Shafaq Shafaq, Matthew J Donough, Ebrahim Oromiehie, Faisal Islam, Andrew W Phillips, Nigel A St John, B Gangadhara Prusty","doi":"10.1177/00219983241283598","DOIUrl":null,"url":null,"abstract":"In-situ consolidation of thermoplastic composites using Automated Fibre Placement (AFP) technology is an emerging manufacturing technique, offering tailored composite properties through customised processing parameters. Multiple competing parameters during AFP manufacturing influence the quality and mechanical performance of the laminates. These lay-up parameters are interrelated, and often require comprehensive experimental characterisation which is costly and time-intensive. This study aims to optimise the fracture toughness of in-situ consolidated thermoplastic composite (AS4/APC-2) and investigate the mechanisms that contribute to it. Taguchi’s method is employed to efficiently analyse the effect of various process parameters at multiple levels. Based on the obtained results, a considerable effect of process parameters on Mode I and II fracture toughness is observed. The statistical analysis reveals that the Hot Gas Torch (HGT) temperature required for AFP processing significantly affects the Mode I fracture toughness, contributing to 33.8%. Whereas, the consolidation force, another key processing parameter in AFP notably affects Mode II fracture toughness, with the contribution of 81.8%. The analysis of variance (ANOVA) reveals interdependent processing parameter relations for both fracture modes. A validation test showed good agreement between the predicted fracture toughness and the experimental test.","PeriodicalId":15489,"journal":{"name":"Journal of Composite Materials","volume":"10 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00219983241283598","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

In-situ consolidation of thermoplastic composites using Automated Fibre Placement (AFP) technology is an emerging manufacturing technique, offering tailored composite properties through customised processing parameters. Multiple competing parameters during AFP manufacturing influence the quality and mechanical performance of the laminates. These lay-up parameters are interrelated, and often require comprehensive experimental characterisation which is costly and time-intensive. This study aims to optimise the fracture toughness of in-situ consolidated thermoplastic composite (AS4/APC-2) and investigate the mechanisms that contribute to it. Taguchi’s method is employed to efficiently analyse the effect of various process parameters at multiple levels. Based on the obtained results, a considerable effect of process parameters on Mode I and II fracture toughness is observed. The statistical analysis reveals that the Hot Gas Torch (HGT) temperature required for AFP processing significantly affects the Mode I fracture toughness, contributing to 33.8%. Whereas, the consolidation force, another key processing parameter in AFP notably affects Mode II fracture toughness, with the contribution of 81.8%. The analysis of variance (ANOVA) reveals interdependent processing parameter relations for both fracture modes. A validation test showed good agreement between the predicted fracture toughness and the experimental test.
基于自动纤维铺放 (AFP) 的 AS4/APC-2 复合材料的模式 I 和模式 II 断裂韧度参数化工艺优化
使用自动纤维铺放(AFP)技术对热塑性复合材料进行原位加固是一种新兴的制造技术,可通过定制的加工参数提供量身定制的复合材料性能。AFP 制造过程中的多个竞争参数会影响层压板的质量和机械性能。这些铺层参数相互关联,通常需要进行全面的实验表征,成本高且耗时长。本研究旨在优化原位固结热塑性复合材料(AS4/APC-2)的断裂韧性,并研究其作用机制。研究采用了田口方法,在多个层面上有效地分析了各种工艺参数的影响。结果表明,工艺参数对模式 I 和模式 II 断裂韧性的影响相当大。统计分析显示,AFP 加工所需的热气喷枪 (HGT) 温度对模式 I 断裂韧性的影响很大,占 33.8%。而 AFP 的另一个关键加工参数--固结力对模式 II 断裂韧度的影响较大,占 81.8%。方差分析(ANOVA)揭示了两种断裂模式中相互依存的加工参数关系。验证测试表明,预测的断裂韧性与实验测试结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Composite Materials
Journal of Composite Materials 工程技术-材料科学:复合
CiteScore
5.40
自引率
6.90%
发文量
274
审稿时长
6.8 months
期刊介绍: Consistently ranked in the top 10 of the Thomson Scientific JCR, the Journal of Composite Materials publishes peer reviewed, original research papers from internationally renowned composite materials specialists from industry, universities and research organizations, featuring new advances in materials, processing, design, analysis, testing, performance and applications. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信