{"title":"Spin-hydrodynamics of electrons in graphene and thermovortical magnetization","authors":"Amaresh Jaiswal","doi":"arxiv-2409.07764","DOIUrl":null,"url":null,"abstract":"We examine the framework of relativistic spin-hydrodynamics in the context of\nelectron hydrodynamics in graphene. We develop a spin-hydrodynamic model for a\n(2 + 1)-dimensional system of fermions under the condition of small spin\npolarization. Our analysis confirms that thermal vorticity, which satisfies the\nglobal equilibrium condition, is also a solution to the spin-hydrodynamic\nequations. Additionally, we calculate the magnetization of the system in global\nequilibrium and introduce a novel phenomenon - thermovortical magnetization -\nresulting from thermal vorticity, which can be experimentally observed in\ngraphene.","PeriodicalId":501573,"journal":{"name":"arXiv - PHYS - Nuclear Theory","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Nuclear Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We examine the framework of relativistic spin-hydrodynamics in the context of
electron hydrodynamics in graphene. We develop a spin-hydrodynamic model for a
(2 + 1)-dimensional system of fermions under the condition of small spin
polarization. Our analysis confirms that thermal vorticity, which satisfies the
global equilibrium condition, is also a solution to the spin-hydrodynamic
equations. Additionally, we calculate the magnetization of the system in global
equilibrium and introduce a novel phenomenon - thermovortical magnetization -
resulting from thermal vorticity, which can be experimentally observed in
graphene.