Expanding the biotechnological scope of metabolic sensors through computation-aided designs

Enrico Orsi, Helena Schulz-Mirbach, Charles A.R. Cotton, Ari Satanowski, Henrik Petri, Susanne L. Arnold, Natalia Grabarczyk, Rutger Verbakel, Karsten S. Jensen, Stefano Donati, Nicole Paczia, Timo Glatter, Andreas Markus Kueffner, Tanguy Chotel, Farah Schillmueller, Alberto De Maria, Hai He, Steffen N. Lindner, Elad Noor, Arren Bar-Even, Tobias J. Erb, Pablo Ivan Nikel
{"title":"Expanding the biotechnological scope of metabolic sensors through computation-aided designs","authors":"Enrico Orsi, Helena Schulz-Mirbach, Charles A.R. Cotton, Ari Satanowski, Henrik Petri, Susanne L. Arnold, Natalia Grabarczyk, Rutger Verbakel, Karsten S. Jensen, Stefano Donati, Nicole Paczia, Timo Glatter, Andreas Markus Kueffner, Tanguy Chotel, Farah Schillmueller, Alberto De Maria, Hai He, Steffen N. Lindner, Elad Noor, Arren Bar-Even, Tobias J. Erb, Pablo Ivan Nikel","doi":"10.1101/2024.08.23.609350","DOIUrl":null,"url":null,"abstract":"Metabolic sensors are microbial strains modified so that biomass formation correlates with the availability of specific metabolites. These sensors are essential for bioengineering (e.g. in growth-coupled designs) but creating them is often a time-consuming and low-throughput process that can potentially be streamlined by in silico analysis. Here, we present the systematic workflow of designing, implementing, and testing versatile Escherichia coli metabolic sensor strains. Glyoxylate, a key metabolite in (synthetic) CO2 fixation and carbon-conserving pathways, served as the test molecule. Through iterative screening of a compact metabolic model, we identified non-trivial growth-coupled designs that resulted in six metabolic sensors with a wide sensitivity range for glyoxylate, spanning three orders of magnitude in detected concentrations. We further adapted these E. coli strains for sensing glycolate and demonstrated their utility in both pathway engineering (testing a key metabolic module via glyoxylate) and applications in environmental monitoring (quantifying glycolate produced by photosynthetic microalgae). The versatility and ease of implementation of this workflow make it suitable for designing and building multiple metabolic sensors for diverse biotechnological applications.","PeriodicalId":501408,"journal":{"name":"bioRxiv - Synthetic Biology","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.23.609350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolic sensors are microbial strains modified so that biomass formation correlates with the availability of specific metabolites. These sensors are essential for bioengineering (e.g. in growth-coupled designs) but creating them is often a time-consuming and low-throughput process that can potentially be streamlined by in silico analysis. Here, we present the systematic workflow of designing, implementing, and testing versatile Escherichia coli metabolic sensor strains. Glyoxylate, a key metabolite in (synthetic) CO2 fixation and carbon-conserving pathways, served as the test molecule. Through iterative screening of a compact metabolic model, we identified non-trivial growth-coupled designs that resulted in six metabolic sensors with a wide sensitivity range for glyoxylate, spanning three orders of magnitude in detected concentrations. We further adapted these E. coli strains for sensing glycolate and demonstrated their utility in both pathway engineering (testing a key metabolic module via glyoxylate) and applications in environmental monitoring (quantifying glycolate produced by photosynthetic microalgae). The versatility and ease of implementation of this workflow make it suitable for designing and building multiple metabolic sensors for diverse biotechnological applications.
通过计算辅助设计扩大代谢传感器的生物技术范围
代谢传感器是对微生物菌株进行改造,使其生物量的形成与特定代谢物的可用性相关。这些传感器对于生物工程(如生长耦合设计)至关重要,但创建这些传感器往往是一个耗时且低通量的过程,而通过硅学分析则有可能简化这一过程。在这里,我们介绍了设计、实施和测试多功能大肠杆菌代谢传感器菌株的系统工作流程。乙醛酸是(合成)二氧化碳固定和碳保存途径中的一种关键代谢物,我们将其作为测试分子。通过对紧凑型代谢模型的迭代筛选,我们确定了非琐碎的生长耦合设计,产生了六种代谢传感器,它们对乙醛酸盐的灵敏度范围很广,检测浓度跨越了三个数量级。我们进一步改造了这些大肠杆菌菌株,使其能够感知乙醛酸盐,并展示了它们在途径工程(通过乙醛酸盐测试关键代谢模块)和环境监测(量化光合微藻产生的乙醛酸盐)中的应用。该工作流程的多功能性和易实施性使其适用于设计和构建多种代谢传感器,以用于各种生物技术应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信