Gate-tunable negative differential resistance in multifunctional van der Waals heterostructure

Richa Mitra, Konstantina Iordanidou, Naveen Shetty, Md Anamul Hoque, Anushree Datta, Alexei Kalaboukhov, Julia Wiktor, Sergey Kubatkin, Saroj Prasad Dash, Samuel Lara-Avila
{"title":"Gate-tunable negative differential resistance in multifunctional van der Waals heterostructure","authors":"Richa Mitra, Konstantina Iordanidou, Naveen Shetty, Md Anamul Hoque, Anushree Datta, Alexei Kalaboukhov, Julia Wiktor, Sergey Kubatkin, Saroj Prasad Dash, Samuel Lara-Avila","doi":"arxiv-2409.04908","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) semiconductors have emerged as leading candidates for\nthe development of low-power and multifunctional computing applications, thanks\nto their qualities such as layer-dependent band gap tunability, high carrier\nmobility, and excellent electrostatic control. Here, we explore a pair of 2D\nsemiconductors with broken-gap (Type III) band alignment and demonstrate a\nhighly gate-tunable p-MoTe$_{2}$/n-SnS$_{2}$ heterojunction tunnel field-effect\ntransistor with multifunctional behavior. Employing a dual-gated asymmetric\ndevice geometry, we unveil its functionality as both a forward and backward\nrectifying device. Consequently, we observe a highly gate-tunable negative\ndifferential resistance (NDR), with a gate-coupling efficiency of $\\eta \\simeq\n0.5$ and a peak-to-valley ratio of $\\sim$ 3 down to 150K. By employing density\nfunctional theory and exploring the density of states, we determine that\ninterband tunneling within the valence bands is the cause of the observed NDR\ncharacteristics. The combination of band-to-band tunneling and gate\ncontrollability of NDR signal open the pathway for realizing gate-tunable 2D\nmaterial-based neuromorphic and energy-efficient electronics.","PeriodicalId":501137,"journal":{"name":"arXiv - PHYS - Mesoscale and Nanoscale Physics","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) semiconductors have emerged as leading candidates for the development of low-power and multifunctional computing applications, thanks to their qualities such as layer-dependent band gap tunability, high carrier mobility, and excellent electrostatic control. Here, we explore a pair of 2D semiconductors with broken-gap (Type III) band alignment and demonstrate a highly gate-tunable p-MoTe$_{2}$/n-SnS$_{2}$ heterojunction tunnel field-effect transistor with multifunctional behavior. Employing a dual-gated asymmetric device geometry, we unveil its functionality as both a forward and backward rectifying device. Consequently, we observe a highly gate-tunable negative differential resistance (NDR), with a gate-coupling efficiency of $\eta \simeq 0.5$ and a peak-to-valley ratio of $\sim$ 3 down to 150K. By employing density functional theory and exploring the density of states, we determine that interband tunneling within the valence bands is the cause of the observed NDR characteristics. The combination of band-to-band tunneling and gate controllability of NDR signal open the pathway for realizing gate-tunable 2D material-based neuromorphic and energy-efficient electronics.
多功能范德华异质结构中的栅极可调负微分电阻
二维(2D)半导体已成为开发低功耗和多功能计算应用的主要候选材料,这要归功于它们的特性,例如随层变化的带隙可调谐性、高移动性和出色的静电控制。在这里,我们探索了一对具有断隙(III 型)带对齐的二维半导体,并展示了具有多功能行为的高栅极可调 p-MoTe$_{2}$/n-SnS$_{2}$ 异质结隧道场效应晶体管。我们采用双栅非对称器件几何结构,揭示了它作为正向和反向校正器件的功能。因此,我们观察到了一个高度可门控调节的负差分电阻(NDR),其门控耦合效率为 $eta \simeq0.5$ ,峰谷比为 $\sim$ 3,低至 150K。通过采用密度函数理论和探索态密度,我们确定价带内的带间隧道是观察到的 NDR 特性的原因。NDR信号的带间隧道和栅极可控性相结合,为实现基于二维材料的栅极可调神经形态和高能效电子器件开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信