Phase Separation-based Antiviral Decoy Particles as Basis for Programmable Broad-spectrum Therapeutics

Or Willinger, Naor Granik, Sarah Goldberg, Roee Amit
{"title":"Phase Separation-based Antiviral Decoy Particles as Basis for Programmable Broad-spectrum Therapeutics","authors":"Or Willinger, Naor Granik, Sarah Goldberg, Roee Amit","doi":"10.1101/2024.08.28.610020","DOIUrl":null,"url":null,"abstract":"To gain access to cells, viruses employ host proteins as receptors. In soluble form, these receptors are used as decoys to inhibit infection. We fused candidate soluble receptors to an RNA-binding protein, and using synthetic long non-coding RNA (slncRNA) cassettes that can undergo phase-separation we scaffolded the receptor fusions to generate antiviral decoy particles. Using confocal microscopy, we screened antiviral protein candidates by observing changes in phase-separation morphology when incubated with viral-mimicking components. We demonstrated that ACE2 decoy particles bind strongly to the coronavirus RBD, facilitating FRET, while sufficiently sialylated decoy particles form agglutinated structures with RNA peripheries in the presence of a sialolectin. Infection assays show ACE2 decoy particles fully inhibit the Delta and Omicron BA.1 coronavirus variants, and LAMP1 and GYPA decoy particles significantly reduce influenza infection in-cellulo. This work establishes a foundation for broad-spectrum antiviral decoy particles, composed of multiple receptors targeting various viruses.","PeriodicalId":501408,"journal":{"name":"bioRxiv - Synthetic Biology","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.28.610020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To gain access to cells, viruses employ host proteins as receptors. In soluble form, these receptors are used as decoys to inhibit infection. We fused candidate soluble receptors to an RNA-binding protein, and using synthetic long non-coding RNA (slncRNA) cassettes that can undergo phase-separation we scaffolded the receptor fusions to generate antiviral decoy particles. Using confocal microscopy, we screened antiviral protein candidates by observing changes in phase-separation morphology when incubated with viral-mimicking components. We demonstrated that ACE2 decoy particles bind strongly to the coronavirus RBD, facilitating FRET, while sufficiently sialylated decoy particles form agglutinated structures with RNA peripheries in the presence of a sialolectin. Infection assays show ACE2 decoy particles fully inhibit the Delta and Omicron BA.1 coronavirus variants, and LAMP1 and GYPA decoy particles significantly reduce influenza infection in-cellulo. This work establishes a foundation for broad-spectrum antiviral decoy particles, composed of multiple receptors targeting various viruses.
基于相分离的抗病毒诱饵粒子是可编程广谱疗法的基础
为了进入细胞,病毒利用宿主蛋白质作为受体。在可溶形式下,这些受体被用作抑制感染的诱饵。我们将候选的可溶性受体与 RNA 结合蛋白融合,并利用可进行相分离的合成长非编码 RNA(slncRNA)盒将受体融合支架化,生成抗病毒诱饵颗粒。利用共聚焦显微镜,我们通过观察与病毒模拟成分孵育时相分离形态的变化,筛选出了候选的抗病毒蛋白。我们证明 ACE2 诱饵颗粒与冠状病毒 RBD 有很强的结合力,促进了 FRET,而充分硅氨酰化的诱饵颗粒在硅氨选择素的存在下会与 RNA 外围形成凝集结构。感染试验表明,ACE2诱饵颗粒能完全抑制Delta和Omicron BA.1冠状病毒变种,而LAMP1和GYPA诱饵颗粒则能显著降低流感的细胞内感染。这项工作为由针对各种病毒的多种受体组成的广谱抗病毒诱饵粒子奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信