Manifold Learning via Foliations and Knowledge Transfer

E. Tron, E. Fioresi
{"title":"Manifold Learning via Foliations and Knowledge Transfer","authors":"E. Tron, E. Fioresi","doi":"arxiv-2409.07412","DOIUrl":null,"url":null,"abstract":"Understanding how real data is distributed in high dimensional spaces is the\nkey to many tasks in machine learning. We want to provide a natural geometric\nstructure on the space of data employing a deep ReLU neural network trained as\na classifier. Through the data information matrix (DIM), a variation of the\nFisher information matrix, the model will discern a singular foliation\nstructure on the space of data. We show that the singular points of such\nfoliation are contained in a measure zero set, and that a local regular\nfoliation exists almost everywhere. Experiments show that the data is\ncorrelated with leaves of such foliation. Moreover we show the potential of our\napproach for knowledge transfer by analyzing the spectrum of the DIM to measure\ndistances between datasets.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding how real data is distributed in high dimensional spaces is the key to many tasks in machine learning. We want to provide a natural geometric structure on the space of data employing a deep ReLU neural network trained as a classifier. Through the data information matrix (DIM), a variation of the Fisher information matrix, the model will discern a singular foliation structure on the space of data. We show that the singular points of such foliation are contained in a measure zero set, and that a local regular foliation exists almost everywhere. Experiments show that the data is correlated with leaves of such foliation. Moreover we show the potential of our approach for knowledge transfer by analyzing the spectrum of the DIM to measure distances between datasets.
通过对折和知识转移进行多元学习
了解真实数据在高维空间中的分布是机器学习中许多任务的关键。我们希望利用经过训练的深度 ReLU 神经网络作为分类器,为数据空间提供自然的几何结构。通过数据信息矩阵(DIM)--菲舍尔信息矩阵的一种变体--模型将辨别数据空间上的奇异对折结构。我们证明,这种褶皱的奇异点包含在一个度量为零的集合中,而且几乎在所有地方都存在局部规则褶皱。实验表明,数据与这种褶皱的叶子相关。此外,我们还通过分析 DIM 的频谱来测量数据集之间的差异,从而展示了我们的方法在知识转移方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信