Reservoir Computing with Bacteria

Jean-Loup Faulon, Paul Ahavi, An Hoang
{"title":"Reservoir Computing with Bacteria","authors":"Jean-Loup Faulon, Paul Ahavi, An Hoang","doi":"10.1101/2024.09.12.612674","DOIUrl":null,"url":null,"abstract":"This study explores the use of bacterial strains in reservoir computing (RC) to solve regression and classification tasks. We employ an Escherichia coli K-12 MG1655 strain as the physical reservoir, training it on M9 minimal media supplemented with 28 metabolites, and measuring growth rates across various media compositions. Our physical RC system, using an Escherichia coli strain, demonstrates superior performance compared to multi-linear regression or support-vector machine and comparable performance to multi-layer perceptron in various regression and classification tasks. Additionally, the performances of RC based on genome-scale metabolic models for several bacterial species correlate with the diversity and complexity of phenotypes they produce. These findings highlight the potential of bacterial RC systems for complex computational tasks typically reserved for digital systems and suggest future research directions, including optimizing feature-to-nutrient mappings and integrating with emerging technologies for enhanced computing capabilities.","PeriodicalId":501408,"journal":{"name":"bioRxiv - Synthetic Biology","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.12.612674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the use of bacterial strains in reservoir computing (RC) to solve regression and classification tasks. We employ an Escherichia coli K-12 MG1655 strain as the physical reservoir, training it on M9 minimal media supplemented with 28 metabolites, and measuring growth rates across various media compositions. Our physical RC system, using an Escherichia coli strain, demonstrates superior performance compared to multi-linear regression or support-vector machine and comparable performance to multi-layer perceptron in various regression and classification tasks. Additionally, the performances of RC based on genome-scale metabolic models for several bacterial species correlate with the diversity and complexity of phenotypes they produce. These findings highlight the potential of bacterial RC systems for complex computational tasks typically reserved for digital systems and suggest future research directions, including optimizing feature-to-nutrient mappings and integrating with emerging technologies for enhanced computing capabilities.
水库细菌计算
本研究探讨了在水库计算(RC)中使用细菌菌株来解决回归和分类任务。我们使用大肠杆菌 K-12 MG1655 菌株作为物理储库,在添加了 28 种代谢物的 M9 最小培养基上对其进行训练,并测量各种培养基成分的生长率。我们使用大肠杆菌菌株的物理 RC 系统在各种回归和分类任务中的表现优于多线性回归或支持向量机,与多层感知器不相上下。此外,基于多个细菌物种基因组尺度代谢模型的 RC 性能与其产生的表型的多样性和复杂性相关。这些发现凸显了细菌 RC 系统在完成通常由数字系统完成的复杂计算任务方面的潜力,并提出了未来的研究方向,包括优化特征到营养物质的映射,以及与新兴技术相结合以增强计算能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信