Convergence of continuous-time stochastic gradient descent with applications to linear deep neural networks

Gabor Lugosi, Eulalia Nualart
{"title":"Convergence of continuous-time stochastic gradient descent with applications to linear deep neural networks","authors":"Gabor Lugosi, Eulalia Nualart","doi":"arxiv-2409.07401","DOIUrl":null,"url":null,"abstract":"We study a continuous-time approximation of the stochastic gradient descent\nprocess for minimizing the expected loss in learning problems. The main results\nestablish general sufficient conditions for the convergence, extending the\nresults of Chatterjee (2022) established for (nonstochastic) gradient descent.\nWe show how the main result can be applied to the case of overparametrized\nlinear neural network training.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study a continuous-time approximation of the stochastic gradient descent process for minimizing the expected loss in learning problems. The main results establish general sufficient conditions for the convergence, extending the results of Chatterjee (2022) established for (nonstochastic) gradient descent. We show how the main result can be applied to the case of overparametrized linear neural network training.
连续时间随机梯度下降的收敛性及其在线性深度神经网络中的应用
我们研究了随机梯度下降过程的连续时间近似值,用于最小化学习问题中的预期损失。主要结果建立了收敛的一般充分条件,扩展了 Chatterjee (2022) 为(非随机)梯度下降建立的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信