k-MLE, k-Bregman, k-VARs: Theory, Convergence, Computation

Zuogong Yue, Victor Solo
{"title":"k-MLE, k-Bregman, k-VARs: Theory, Convergence, Computation","authors":"Zuogong Yue, Victor Solo","doi":"arxiv-2409.06938","DOIUrl":null,"url":null,"abstract":"We develop hard clustering based on likelihood rather than distance and prove\nconvergence. We also provide simulations and real data examples.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop hard clustering based on likelihood rather than distance and prove convergence. We also provide simulations and real data examples.
k-MLE, k-Bregman, k-VARs:理论、收敛、计算
我们开发了基于似然而非距离的硬聚类,并证明了收敛性。我们还提供了模拟和真实数据示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信