{"title":"EpiScan: accurate high-throughput mapping of antibody-specific epitopes using sequence information","authors":"Chuan Wang, Jiangyuan Wang, Wenjun Song, Guanzheng Luo, Taijiao Jiang","doi":"10.1038/s41540-024-00432-7","DOIUrl":null,"url":null,"abstract":"<p>The identification of antibody-specific epitopes on virus proteins is crucial for vaccine development and drug design. Nonetheless, traditional wet-lab approaches for the identification of epitopes are both costly and labor-intensive, underscoring the need for the development of efficient and cost-effective computational tools. Here, EpiScan, an attention-based deep learning framework for predicting antibody-specific epitopes, is presented. EpiScan adopts a multi-input and single-output strategy by designing independent blocks for different parts of antibodies, including variable heavy chain (V<sub>H</sub>), variable light chain (V<sub>L</sub>), complementary determining regions (CDRs), and framework regions (FRs). The block predictions are weighted and integrated for the prediction of potential epitopes. Using multiple experimental data samples, we show that EpiScan, which only uses antibody sequence information, can accurately map epitopes on specific antigen structures. The antibody-specific epitopes on the receptor binding domain (RBD) of SARS coronavirus 2 (SARS-CoV-2) were located by EpiScan, and the potentially valuable vaccine epitope was identified. EpiScan can expedite the epitope mapping process for high-throughput antibody sequencing data, supporting vaccine design and drug development. Availability: For the convenience of related wet-experimental researchers, the source code and web server of EpiScan are publicly available at https://github.com/gzBiomedical/EpiScan.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-024-00432-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The identification of antibody-specific epitopes on virus proteins is crucial for vaccine development and drug design. Nonetheless, traditional wet-lab approaches for the identification of epitopes are both costly and labor-intensive, underscoring the need for the development of efficient and cost-effective computational tools. Here, EpiScan, an attention-based deep learning framework for predicting antibody-specific epitopes, is presented. EpiScan adopts a multi-input and single-output strategy by designing independent blocks for different parts of antibodies, including variable heavy chain (VH), variable light chain (VL), complementary determining regions (CDRs), and framework regions (FRs). The block predictions are weighted and integrated for the prediction of potential epitopes. Using multiple experimental data samples, we show that EpiScan, which only uses antibody sequence information, can accurately map epitopes on specific antigen structures. The antibody-specific epitopes on the receptor binding domain (RBD) of SARS coronavirus 2 (SARS-CoV-2) were located by EpiScan, and the potentially valuable vaccine epitope was identified. EpiScan can expedite the epitope mapping process for high-throughput antibody sequencing data, supporting vaccine design and drug development. Availability: For the convenience of related wet-experimental researchers, the source code and web server of EpiScan are publicly available at https://github.com/gzBiomedical/EpiScan.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.