Periodicity of tiles in finite Abelian groups

Shilei Fan, Tao Zhang
{"title":"Periodicity of tiles in finite Abelian groups","authors":"Shilei Fan, Tao Zhang","doi":"arxiv-2408.12901","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the concept of periodic tiling (PT) property for\nfinite abelian groups. A group has the PT property if any non-periodic set that\ntiles the group by translation has a periodic tiling complement. This property\nextends the scope beyond groups with the Haj\\'os property. We classify all\ncyclic groups having the PT property. Additionally, we construct groups that\npossess the PT property but without the Haj\\'os property. As byproduct, we\nidentify new groups for which the implication ``Tile $\\Longrightarrow$\nSpectral\" holds. For elementary $p$-groups having the PT property, we show that\na tile must be a complete set of representatives of the cosets of some\nsubgroup, by analyzing the structure of tiles.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce the concept of periodic tiling (PT) property for finite abelian groups. A group has the PT property if any non-periodic set that tiles the group by translation has a periodic tiling complement. This property extends the scope beyond groups with the Haj\'os property. We classify all cyclic groups having the PT property. Additionally, we construct groups that possess the PT property but without the Haj\'os property. As byproduct, we identify new groups for which the implication ``Tile $\Longrightarrow$ Spectral" holds. For elementary $p$-groups having the PT property, we show that a tile must be a complete set of representatives of the cosets of some subgroup, by analyzing the structure of tiles.
有限阿贝尔群中瓦片的周期性
本文介绍了无穷无边群的周期性平铺(PT)属性概念。如果通过平移使群平铺的任何非周期性集合都有周期性平铺补集,那么这个群就具有 PT 特性。这一性质扩展了具有 Haj\'os 性质的群的范围。我们对具有 PT 性质的所有循环群进行了分类。此外,我们还构造了具有 PT 属性但不具有 Haj\'os 属性的群。作为副产品,我们识别出了蕴涵 "瓦片/长直箭/光谱 "成立的新群。对于具有 PT 特性的基本 $p$ 群,我们通过分析瓦片的结构,证明瓦片必须是某个子群余集代表的完整集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信