Context-free graphs and their transition groups

Daniele D'Angeli, Francesco Matucci, Davide Perego, Emanuele Rodaro
{"title":"Context-free graphs and their transition groups","authors":"Daniele D'Angeli, Francesco Matucci, Davide Perego, Emanuele Rodaro","doi":"arxiv-2408.13070","DOIUrl":null,"url":null,"abstract":"We define a new class of groups arising from context-free inverse graphs. We\nprovide closure properties, prove that their co-word problems are context-free,\nstudy the torsion elements, and realize them as subgroups of the asynchronous\nrational group. Furthermore, we use a generalized version of the free product\nof graphs and prove that such a product is context-free inverse closed. We also\nexhibit an example of a group in our class that is not residually finite and\none that is not poly-context-free. These properties make them interesting\ncandidates to disprove both the Lehnert conjecture (which characterizes\nco-context-free groups as all subgroups of Thompson's group V) and the Brough\nconjecture (which characterizes finitely generated poly-context-free groups as\nvirtual finitely generated subgroups of direct products of free groups).","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We define a new class of groups arising from context-free inverse graphs. We provide closure properties, prove that their co-word problems are context-free, study the torsion elements, and realize them as subgroups of the asynchronous rational group. Furthermore, we use a generalized version of the free product of graphs and prove that such a product is context-free inverse closed. We also exhibit an example of a group in our class that is not residually finite and one that is not poly-context-free. These properties make them interesting candidates to disprove both the Lehnert conjecture (which characterizes co-context-free groups as all subgroups of Thompson's group V) and the Brough conjecture (which characterizes finitely generated poly-context-free groups as virtual finitely generated subgroups of direct products of free groups).
无上下文图及其过渡群
我们定义了一类由无上下文逆图产生的新群。我们提供了封闭性质,证明了它们的共词问题是无上下文的,研究了扭转元素,并将它们实现为异步有理群的子群。此外,我们还使用了图的自由积的广义版本,并证明这种积是无上下文逆封闭的。我们还举例说明了我们这一类中的一个群不是残差有限群,也不是无多上下文群。这些性质使它们成为推翻莱纳特猜想(该猜想将无上下文群表征为汤普森群 V 的所有子群)和布拉夫猜想(该猜想将有限生成的无多上下文群表征为自由群直接积的虚拟有限生成子群)的有趣候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信