Solvable Baumslag-Solitar Lattices

Noah Caplinger
{"title":"Solvable Baumslag-Solitar Lattices","authors":"Noah Caplinger","doi":"arxiv-2408.13381","DOIUrl":null,"url":null,"abstract":"The solvable Baumslag Solitar groups $\\text{BS}(1,n)$ each admit a canonical\nmodel space, $X_n$. We give a complete classification of lattices in $G_n =\n\\text{Isom}^+(X_n)$ and find that such lattices fail to be strongly\nrigid$\\unicode{x2014}$there are automorphisms of lattices $\\Gamma \\subset G_n$\nwhich do not extend to $G_n$$\\unicode{x2014}$but do satisfy a weaker form of\nrigidity: for all isomorphic lattices $\\Gamma_1,\\Gamma_2\\subset G_n$, there is\nan automorphism $\\rho \\in \\text{Aut}(G_n)$ so that $\\rho(\\Gamma_1) = \\Gamma_2$.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The solvable Baumslag Solitar groups $\text{BS}(1,n)$ each admit a canonical model space, $X_n$. We give a complete classification of lattices in $G_n = \text{Isom}^+(X_n)$ and find that such lattices fail to be strongly rigid$\unicode{x2014}$there are automorphisms of lattices $\Gamma \subset G_n$ which do not extend to $G_n$$\unicode{x2014}$but do satisfy a weaker form of rigidity: for all isomorphic lattices $\Gamma_1,\Gamma_2\subset G_n$, there is an automorphism $\rho \in \text{Aut}(G_n)$ so that $\rho(\Gamma_1) = \Gamma_2$.
可解鲍姆斯莱格-索利塔网格
可解的鲍姆斯拉格索利塔群 $\text{BS}(1,n)$ 都包含一个规范模型空间 $X_n$。我们给出了 $G_n =\text{Isom}^+(X_n)$ 中网格的完整分类,并发现这些网格不具有强刚性$unicode{x2014}$,存在网格 $\Gamma \子集 G_n$ 的自动变形,它们不扩展到 $G_n$,但满足较弱形式的刚性:对于所有同构的网格 $\Gamma_1,\Gamma_2\subset G_n$来说,在 \text{Aut}(G_n)$ 中存在一个自变量 $\rho ,这样 $\rho(\Gamma_1) = \Gamma_2$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信