Greedy base sizes for sporadic simple groups

Coen del Valle
{"title":"Greedy base sizes for sporadic simple groups","authors":"Coen del Valle","doi":"arxiv-2408.14139","DOIUrl":null,"url":null,"abstract":"A base for a permutation group $G$ acting on a set $\\Omega$ is a sequence\n$\\mathcal{B}$ of points of $\\Omega$ such that the pointwise stabiliser\n$G_{\\mathcal{B}}$ is trivial. Denote the minimum size of a base for $G$ by\n$b(G)$. There is a natural greedy algorithm for constructing a base of\nrelatively small size; denote by $\\mathcal{G}(G)$ the maximum size of a base it\nproduces. Motivated by a long-standing conjecture of Cameron, we determine\n$\\mathcal{G}(G)$ for every almost simple primitive group $G$ with socle a\nsporadic simple group, showing that $\\mathcal{G}(G)=b(G)$.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A base for a permutation group $G$ acting on a set $\Omega$ is a sequence $\mathcal{B}$ of points of $\Omega$ such that the pointwise stabiliser $G_{\mathcal{B}}$ is trivial. Denote the minimum size of a base for $G$ by $b(G)$. There is a natural greedy algorithm for constructing a base of relatively small size; denote by $\mathcal{G}(G)$ the maximum size of a base it produces. Motivated by a long-standing conjecture of Cameron, we determine $\mathcal{G}(G)$ for every almost simple primitive group $G$ with socle a sporadic simple group, showing that $\mathcal{G}(G)=b(G)$.
零星简单群的贪婪基数大小
作用于集合 $\Omega$ 的置换群 $G$ 的基是 $\Omega$ 的点的序列$\mathcal{B}$,使得点稳定器$G_{mathcal{B}}$ 是微不足道的。用$b(G)$ 表示$G$ 的最小基数。有一种天然的贪婪算法可以构造一个相对较小的基数;用$\mathcal{G}(G)$ 表示它所产生的基数的最大值。受卡梅伦一个长期猜想的启发,我们确定了每一个几乎简单的基元群$G$的基底为poradic简单群的$\mathcal{G}(G)$,证明了$\mathcal{G}(G)=b(G)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信