Normal extensions and full restricted semidirect products of inverse semigroups

Mária B. Szendrei
{"title":"Normal extensions and full restricted semidirect products of inverse semigroups","authors":"Mária B. Szendrei","doi":"arxiv-2409.00870","DOIUrl":null,"url":null,"abstract":"We characterize the normal extensions of inverse semigroups isomorphic to\nfull restricted semidirect products, and present a Kalouznin-Krasner theorem\nwhich holds for a wider class of normal extensions of inverse semigroups than\nthat in the well-known embedding theorem due to Billhardt, and also strengthens\nthat result in two respects. First, the wreath product construction applied in\nour result, and stemmming from Houghton's wreath product, is a full restricted\nsemidirect product not merely a lambda-semidirect product. Second, the Kernel\nclasses of our wreath product construction are direct products of some Kernel\nclasses of the normal extension to be embedded rather than only inverse\nsubsemigroups of the direct power of its whole Kernel.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":"406 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We characterize the normal extensions of inverse semigroups isomorphic to full restricted semidirect products, and present a Kalouznin-Krasner theorem which holds for a wider class of normal extensions of inverse semigroups than that in the well-known embedding theorem due to Billhardt, and also strengthens that result in two respects. First, the wreath product construction applied in our result, and stemmming from Houghton's wreath product, is a full restricted semidirect product not merely a lambda-semidirect product. Second, the Kernel classes of our wreath product construction are direct products of some Kernel classes of the normal extension to be embedded rather than only inverse subsemigroups of the direct power of its whole Kernel.
反半群的正扩展和全限制半间接积
我们描述了与完全受限半间接积同构的逆半群的正扩展,并提出了一个卡卢兹宁-克拉斯诺定理,它比比尔哈特提出的著名嵌入定理适用于更多的逆半群的正扩展,而且还在两个方面加强了该结果。首先,我们的结果中应用的花环积构造源于霍顿的花环积,是一个完全的有限半间接积,而不仅仅是一个λ半间接积。其次,我们的花环积构造中的核类是要嵌入的正扩展的某些核类的直接积,而不仅仅是其整个核的直接幂的逆子半群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信