A classification of $C_{p^n}$-Tambara fields

Noah Wisdom
{"title":"A classification of $C_{p^n}$-Tambara fields","authors":"Noah Wisdom","doi":"arxiv-2409.02966","DOIUrl":null,"url":null,"abstract":"Tambara functors arise in equivariant homotopy theory as the structure\nadherent to the homotopy groups of a coherently commutative equivariant ring\nspectrum. We show that if $k$ is a field-like $C_{p^n}$-Tambara functor, then\n$k$ is the coinduction of a field-like $C_{p^s}$-Tambara functor $\\ell$ such\nthat $\\ell(C_{p^s}/e)$ is a field. If this field has characteristic other than\n$p$, we observe that $\\ell$ must be a fixed-point Tambara functor, and if the\ncharacteristic is $p$, we determine all possible forms of $\\ell$ through an\nanalysis of the behavior of the Frobenius endomorphism and an application of\nArtin-Schreier theory.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tambara functors arise in equivariant homotopy theory as the structure adherent to the homotopy groups of a coherently commutative equivariant ring spectrum. We show that if $k$ is a field-like $C_{p^n}$-Tambara functor, then $k$ is the coinduction of a field-like $C_{p^s}$-Tambara functor $\ell$ such that $\ell(C_{p^s}/e)$ is a field. If this field has characteristic other than $p$, we observe that $\ell$ must be a fixed-point Tambara functor, and if the characteristic is $p$, we determine all possible forms of $\ell$ through an analysis of the behavior of the Frobenius endomorphism and an application of Artin-Schreier theory.
$C_{p^n}$-坦巴拉场的分类
坦巴拉函子在等变同构理论中是作为相干交换等变环谱的同构群的固有结构而出现的。我们证明,如果 $k$ 是一个类场$C_{p^n}$-坦巴拉函子,那么$k$ 是一个类场$C_{p^s}$-坦巴拉函子$\ell$ 的联立,从而$\ell(C_{p^s}/e)$ 是一个场。如果这个域的特征不是$p$,我们就会发现$\ell$一定是一个定点坦巴拉函子;如果这个域的特征是$p$,我们就会通过对弗罗贝纽斯内态行为的分析和阿尔丁-施莱尔理论的应用来确定$\ell$的所有可能形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信